PMD15305-AA

sprinQcard

SPRINGCARD CCID oveR SERIAL

Developer's Guide

http://www.springcard.com/

springcard —

page 2 of 106

SeringCarD CCID over SeriaL - Developer's Guide

DocumenT IDENTIFICATION

Category Developer's Guide

Family/Customer K663

Reference PMD15305 Version AA

Status Classification Public

Keywords K663, CSB4.6, PC/SC, contactless cards, RFID labels, NFC tags

Abstract

File name V:\Dossiers\SpringCard\A-Notices\PCSC\CCID over Serial and over TCP\[PMD15305-AA] K663

CCID Developer's Guide.odt
Date saved 29/07/15 Date printed 05/12/12

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

S

page 3 of 106

ringcard —

SeringCarD CCID over SeriaL - Developer's Guide

Ver.

AA

Revision History

Date Author Valid. by Approv. Details

Tech. Qual. by

28/07/15 JDA Creation

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

Springcarc

PMD15305-AA
page 4 of 106

SeringCARD CCID over SeriaL - Developer's Guide

CoNTENTS

L.INTRODUCTION...cctttiiiiiiiniiiteeee e e et eee e e e e s enreeeeeeeeeaaaes 6 5.1.1.ATR of an I1SO 14443-4 compliant smartcard................ 55

5.1.2.ATR of a wired-logic PICC/VICC......c.cccoeevuvreesireeeirenne 57
1.1 ABSTRACT. ..coovvvnnvns 5.1.3.Using the GET DATA iNStrUCtioN..oovvvvvvvvvvvvvoovvreososornens 58
1.2.5uppoRTED PRODUCTS 5.1.4.Contactless ProtoCol.......cccuevveeeveerieeeeeeeecreeiereseereenenes 58
1.3 AUDIENCE . uuueeeeeeeeeeertrttieeeeeeesteeessnsersnneersnneersnaneersnnns 6 5.1.5.Contactless card name bytes .. 59
1.4 . SUPPORT AND UPDATES. ..uuuueeeeererrersssnnnneersnnseessnneessnnesssnnees 6 5.2.0SO 1448432 PICCS. oo 61
1.5 USEFUL LINKS.eeeeeeerrerennaereereeeerenneersneerennesennnneensnneenennns 7 5.2.1.Desfire first version (0.4).....c..coceeeveeeeveeeeieeeeieeivveeeeennn 61
2.PC/SC, SMARTCARDS AND NFC: QUICK INTRODUCTION AND g;;g:;;lii\;?;gmandwl ... Zi
GLOSSARY ...ttt r s et e e e e e e 8 5 3 Wirep-Loic PICCs ased on 1SO 14443-A. . 62
2.1.SMARTCARDS AND CONTACTLESS SMARTCARDS STANDARDS...vvevveen.s. 8 5.3.1.Mifare ClassiC......coouerruiernieiirieeeiee e sieessiieeeee e 62
2 Y 1 Y o= T o OSSR 8 5.3.2.Mifare Plus X and Mifare Plus S..........cccccoevviniininnnnnne 64
2.1.2.Contactless SMartCards.......cc.uvvuereererrereererrereeseessensennes 9 5.3.3.NFC Forum Type 2 Tags — Mifare UltraLight and
2.2'NON—7816—4 CONTACTLESS CARDS — |NTRODUC|NG THE EMBEDDED UItraLight C, NTAGZO3 .. 66

3.THE SCARD_ON_MCU LIBRARY.....ettttereiriiirieeeiiiianeeeeeeens 17
3. 1. GETTING STARTED.uuuuunreeeeerrrrerrnneeernneersnneeresneeersnneerennens 17
3.1.1.Download the library.......ccceccvvevieeceeseeree e, 17
3.1.2.Tailor the library to your target.........cccceeeevivreeecinnnnne 17
3.2.DOCUMENTATION OF THE LIBRARY.vvvvvrunnnsereesrsnnserrsnneessnneeneen 18
4. THE EMBEDDED APDU INTERPRETER.....cccvvveeiiiiiieeiicennnen, 19
L I S 7 U

4.1.1.CLA byte of the embedded APDU interpreter
4.1.2.Status words returned by the embedded APDU

(L2 1e=T 0] =1 <] PP 20
4.1.3.Embedded APDU interpreter instruction list................ 21
4.2 .InsTrucTions DEFINED BY THE PC/SC stanparp (v2 parT 3).....22
4.2.1.GET DATA iNSTruCtion.......cccevvvieeeeiienriiiieeeeeee e 22
4.2.2.LOAD KEY inStruction.........cccceeeeeeeiiinirieeiiiien e eeeeeeenes 24
4.2.3.GENERAL AUTHENTICATE instruction........cccccceeeeeeunnnne. 26

4.2.4.READ BINARY instruction.................
4.2.5.UPDATE BINARY instruction

4.3.1.MIFARE CLASSIC READ instruction..........ccveeevvineeennnnns 32
4.3.2.MIFARE CLASSIC WRITE instruction..........cccevveeeeeeennnen. 34
4.3.3.MIFARE CLASSIC VALUE instruction........cccceeeeeevvvvnnnnnee. 37
4.3.4.RFID MEMORY CONTROL instruction.......cceeeeveveneeevnnnes 40
4.3.5.CONTACTLESS SLOT CONTROL instruction................... 44
4.3.6.SET FELICA RUNTIME PARAMETERS instruction........... 45
4.3.7.ENCAPSULATE instruction for the Contactless slot....... 47
4.4.07HER SPRINGCARD=SPECIFIC INSTRUCTIONS. 1. +evvvuneerrnresnnsnnnns 51
4.4.1.READER CONTROL instruction......ccccceeeevevvveeeeeeinneennnen. 51
4.4.2. TEST iNStruction....ccccvviiieeiee e 53

5.WORKING WITH CONTACTLESS CARDS — USEFUL HINTS....55

5.1.RecoGnizing anD 1DENTIFYING PICC/VICC in PC/SC
ENVIRONMENT 11 eeeeeeeererenennsessnnseessnssersnnsersnnseessnsesnsnneennnnnes 55

5.3.4.NFC Forum Type 1 Tags — Innovision/Broadcom chips. 68
5.4 Wirep-Loaic PICCs sasep on ISO 14443-B

5.4.1.ST Micro Electronics SR176.......ccccceevvveeencunrvvnvnnnnnnnnnnns
5.4.2.ST Micro Electronics SRI4K, SRIX4K, SRI512, SRX512,
QRIS L2 e a e e e e e e et aeaaan 72
5.4.3.Inside Contactless PicoPass, I1SO 14443-2 mode........... 73
5.4.4.Inside Contactless PicoPass, I1SO 14443-3 mode........... 74
5.4.5.Atmel CryptoRF........oiiiiiiiiicieee ettt 75
5.5.ISO 15693 VICCs...uuueieeieeeeeeeeeeiie et eeetie e eeeieeeene e 76
5.5.1.1SO 15693-3 read/write commands........c...ccevveeerveeenns 76
5.5.2.Read/write commands for ST Micro Electronics chips
with a 2-B block address.........ccceeeeeiieeeeiiiee e 77
5.5.3.Complete ISO 15693 command set.... .77
5.5.4.Implementation of basic ISO 15693 commands........... 78
5.6.0THER NON-ISO PICCs...cccveiieiieeeeie e eevceeeennas 81
5.6.1.NFC Forum Type 3 Tags / Felica.......ccevueruevrerreneereienenn 81
5.7.0THER NON-ISO VICCs...cvuniiiiiiiiiieieiiie et 82
5.7.1.EMAL3A....... e 82
6.USING THE H663 WITH A NFCIP-1 TARGET......cccevvvrvrrrrnnnnn 83
7.DIRECT CONTROL OF THE KB63......cccuvivieeeeeeiieiiiiee e 84
8 2 LR 84
7.1.1.Link to SpringProx legacy protocol.........cccceeeeevinrnnnee. 84
7.1.2.Format of response, return codes..........ccceevvrervrrennnnn. 84
7.1.3.Redirection to the Embedded APDU Interpreter.......... 84
7.2.LiST OF AVAILABLE CONTROL SEQUENCES..eeeeereruruuensaeerernnnnsanans 85
7.2.1.Action on the LEDs....................85
7.2.2.Action on the buzzer ..86
7.2.3.0btaining information on coupler and slots................. 87
7.2.4.Reading/writing K663's configuration registers............ 88
7.2.5.Pushing a new temporary configuration...................... 89
8.CONFIGURATION REGISTERS.....ccctttvrrrririniniiiiiiiraseneeeeeenann 90
8.1.EDITING COUPLER'S CONFIGURATION . .veeeeeeeeeeeeeeeeeeesieeeeeeeeens 90

INTEGRATOR. 1t etuttsnttsnntssnttsnntesentssssesnnttsssssssnsssstssssssnnnnsnsees

8.3.CORE CONFIGURATION
8.3.1.Configuration of the LEDs
8.3.2.0ptions for the LEDs and GPIOs.........ccccovveeeeeeeeeeeenennnn. 93

springcard

PMD15305-AA
page 5 of 106

SeringCarD CCID over SeriaL - Developer's Guide

8.3.3.Behaviour of the LEDs and buzzer....

8.4.PC/SC CONFIGURATION .vveeavveeesrrrrereeeeeeessssnsareeeeeesesesnns
8.4.1.Slot naming and startup mode.........cccveeeviveeeeccnnnnnnnnn,
8.4.2.CLA byte of APDU interpreter.....ccceeevececcnnnnnnnnnnnnnnns
8.4.3.Behaviour of the contactless slot in PC/SC mode......... 95
8.5.CONTACTLESS CONFIGURATION...cevvvrreneneerernnerssnneersnnnenes ...96
8.5.1.Enabled protocols.......... ...96
8.5.2.Parameters for polling............ .97
8.5.3.0ptions for Polling.......ccceeeeiiiieeiiiie e 98
8.5.4.Allowed baudrates in T=CL (ISO 14443-4).................... 99
8.5.5.0ptions for T=CL (ISO 14443-4)........coocovveereerererenn. 100
8.6.FELICA CONFIGURATION. 1vvueeeeereeeereeerieerianeeeerneeerneeenennnns 100
8.6.1.Service Codes for Felica read/write.......ccceeevvveeeeennn.. 100
8.7.1S0 18092 / NFC-DEP CONFIGURATION.........evvvvvveeennn.. 101
8.7.1.Global Bytes in ATR_REQ.

9.ANNEX A — SPECIFIC ERROR CODES.......ccccervvereenrierierannnne 102
10.3RD-PARTY LICENSES......cccoieeeeeeeeeeeeeeeereene e 104
T1O.1.FREERTOS. ..oetieieiieieeeeee e 104

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

Ar J}@
/7‘ Y e
Spr" . xuy 1 PMD15305-AA

page 6 of 106

SeringCARD CCID over SeriaL - Developer's Guide

1. InTRODUCTION

1.1. AsstrACT

SpringCard K663 is a serial Contactless Coupler module. The K663 module is the core of a large
family of Contactless Couplers offered by SpringCard.

This document provides all necessary information to develop software that will use the K663 core.

All the features described in this document are available starting with firmware version 2.02.
Earlier versions could be upgraded or shall be operated using the Legacy SpringProx protocol (doc
[PMDEO51)).

1.2. SupPORTED PRODUCTS

At the time of writing, this document refers to all SpringCard Couplers in the K663 group:
The K663S and K663A: OEM modules without antenna,
The K663-232, K663-TTL: OEM couplers with integrated antenna,
The TwistyWriter-232, TwistyWriter-TTL: OEM couplers with remote antenna.

1.3. Aubience

This manual is designed for use by application developers. It assumes that the reader has expert
knowledge of computer and network (TCP/IP) development, and a basic knowledge of PC/SC, of
the ISO 7816-4 standard for smartcards, and of the NFC Forum's specifications.

Chapter 2 provides a quick introduction to those technologies and concepts, but can't cover all the
aspects, as would a book or a training session.

1.4. SuPPORT AND UPDATES

Useful related materials (product datasheets, application notes, sample software, HOWTOs and
FAQs...) are available at SpringCard’s web site:

www.springcard.com

Updated versions of this document and others are posted on this web site as soon as they are
available.

For technical support enquiries, please refer to SpringCard support page, on the web at

www.springcard.com/support

http://www.springcard.com/support
http://www.springcard.com/

springcard —

page 7 of 106

SeringCarD CCID over SeriaL - Developer's Guide

1.5.

USEFUL LINKS

USB CCID specification:
http://www.usb.org/developers/docs/devclass _docs/DWG_Smart-Card CCID Rev110.pdf

Microsoft’s PC/SC reference documentation is included in Visual Studio help system, and
available online at http://msdn.microsoft.com . Enter “winscard” or “SCardTransmit”
keywords in the search box.

MUSCLE PCSC-Lite project: http://www.musclecard.com (direct link to PC/SC stack:
http://pcsclite.alioth.debian.org)

PC/SC workgroup: http://www.pcscworkgroup.com

NFC Forum: http://www.nfc-forum.org

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

http://www.nfc-forum.org/
http://www.pcscworkgroup.com/
http://pcsclite.alioth.debian.org/
http://www.musclecard.com/
http://msdn.microsoft.com/
http://www.usb.org/developers/docs/devclass_docs/DWG_Smart-Card_CCID_Rev110.pdf

[| | ®
//' i~ =% ",r/", ,//,' =
S r“ . LU U PMD15305-AA
ot bl page 8 of 106

SeringCARD CCID over SeriaL - Developer's Guide

2. PC/SC, smartcarps AND NFC: Quick INTRODUCTION AND GLOSSARY

2.1. SMARTCARDS AND CONTACTLESS SMARTCARDS STANDARDS
2.1.1. Smartcards

A smartcard is a microprocessor (running a software of course) mounted in a plastic card. The ISO
7816 family of standards defines everything for smartcards, from the electrical behaviour up to
the format of application-level frames (APDU) and even up to a common list of functions that
exposes the smartcard as a small file-system, with directories and files, where the data are stored.

The protocol between a PC and a smartcard (hence the name “PC/SC”) is a master/slave protocol:
the application running on the PC send a Command (C-APDU); the application running in the card
execute the command and returns a Response (R-APDU) in a given time window. There are two
low level protocols (T=0 and T=1) but in most situation the application will not see a difference
between both.

There's only one moment when the smartcard sends something on its own, without a prior
Command: upon startup, when the card resets, it must send an ATR (Answer To Reset).

a. ATR (SCto PC, upon reset)

The ATR conveys “technical” information about the communication parameters supported by the
smartcard. A part of the ATR, named the Historical Bytes, typically hold information about the
card's operating system or main application. As a consequence, the ATR is frequently considered
to be the 'fingerprint' of a smartcard. An application may rely on the ATR to determine whether it
would try to process a particular card, or just ignore it.

For more information, please refer to ISO 7816-3.
b. C-APDUs (PC to SC)

A C-APDU must follow a specific formatting:

1** byte is named CLAss and is used by the card's operating system to 'route' the command
to the target card application (or applet, or cardlet),

2" byte is named INStruction and tells which command shall be executed,
3 and 4" bytes are named P1 and P2 and are used as parameters,

If the PC application needs to send data to the card application, the 5™ byte is named Lc
(length command) and conveys the length of the command's data. Then come the data
block itself,

®
®

springcarc —

page 9 of 106

SeringCARD CCID over SeriaL - Developer's Guide

If the PC application expects to retrieve data from the card application, the last byte of the
C-APDU is named Le (length expected) and tells how many bytes the PC wants (or expects
to) get in return.

The standard proposes a INS value for some typical functions (select a file, read, write, get
authenticated, etc).

For more information, please refer to ISO 7816-4.
C. R-APDUs (SC to PC)

A R-APDU must also follow a specific formatting:
The data block comes first. Its length is implicit (and must be coherent with Le),

The R-APDU is terminated by 2 bytes named the Status Word (SW1 and SW2). Allowed
values are ,9xxx for success (normally ,9000) or ,6xxx for errors,

The standard proposes a SW value for every typical error cause.

For more information, please refer to ISO 7816-4.

2.1.2. Contactless smartcards

The ISO 14443 family is the normative reference for contactless smartcards:

ISO 14443-1 and ISO 14443-2 defines the form-factor, RF characteristics, and bit-level
communication,

ISO 14443-3 specifies the byte- and frame-levels part of the communication?,

ISO 14443-4 introduces a transport-level protocol that more-or-less looks like T=1, so it is
often called “T=CL” (but this name never appears is the standard).

On top of T=CL, the contactless smartcard is supposed to have the same function set and APDUs
formatting rules as contact smartcard, i.e. it should be “ISO 7816-4 on top of ISO 14443”.

In this context, working with a smartcard (either contact or contactless) is as easy as sending a
command (C-APDU) to the card, and receive its response (R-APDU). The “smartcard reader” is only
a gateway that implements this APDU exchange stuff (with a relative abstraction from the
transport-level protocols).

11SO 14443-2 and -3 are divided into 2 technologies: ISO 14443 type A and ISO 14443 type B. They use different codings and low-
level protocols, but the transport protocol defined in ISO 14443-4 is type-agnostic: it makes no difference whether the card is type
A or type B.

®
®

springcarc —

page 10 of 106

SeringCARD CCID over SeriaL - Developer's Guide

2.2. Non-7816-4 cONTACTLESS CARDS — INTRODUCING THE EMBEDDED APDU INTERPRETER

A lot of contactless cards are not actually “smartcards” because they are not ISO 7816-4
compliant. They don't comply with the ISO 14443-4 transport-level protocol, and their vendor-
specific function set can't fit directly in a single “exchange” function. Therefore, they are not
natively supported by the system's PC/SC stack. This is the case of:

Wired-logic memory cards (Mifare, CTS, SR... families),
NFC Tags (type 1, type 2, type 3),

Even some proprietary microprocessor-based cards that use a specific communication
protocol with a frame format not compliant with ISO 7816-4 (Desfire EVO...).

The role of the embedded APDU interpreter, running in the K663, is to 'emulate' a standard
smartcard in those cases. Doing so, the application doesn't have to deal with the underlying
protocols and chip-specific commands.

Basically, the embedded APDU interpreter exposes any wired-logic card as being a T=1 compliant
smartcard, and provides two functions taken from ISO 7816-4: READ BINARY and UPDATE BINARY.

In ISO 7816-4, these functions are intended to access data within a file (in the card's file-system),
but on memory cards they give access to the “raw” storage, using a byte-, block- or page-based
access depending on the card technology and features.

The embedded APDU interpreter is documented in chapter 4.

2.3. PC/sC

PC/SC is the de-facto standard to interface Personal Computers with Smart Cards (and smartcard
readers of course). SpringCard PC/SC Couplers comply with this standard. This makes those
products usable on most operating systems, using a high-level and standardized API.

To have an overview of PC/SC, please read our Introduction to PC/SC development and simplified
documentation of the API, available online at

http://www.springcard.com/download/find.php?file=pmdz061

PC/SC defines 4 functions that are enough to do anything with cards:

SCardTransmit is the communication function. The application sends a C-APDU and
retrieve the card's R-APDU (in the case of a wired-logic card, the application communicates
with the embedded APDU interpreter and not directly with the card),

SCardConnect opens the communication channel between the application and the card,
SCardDisconnect closes the communication channel,

SCardStatus (and its derived SCardGetStatusChange) is used to monitor the card presence.

http://www.springcard.com/download/find.php?file=pmdz061

springcard

PMD15305-AA
page 11 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

a. PC/SC and a contactless smartcard
PC K663 Polling + anticollision -
(REQA, REQB, ...)
application
C/Iess Enter T=CL
reader (RATS or ATTRIB) P
L Card insert event ‘
" (SCardStatus changed) - (ATS or R-ATTRIB)
Connect to the card
(SCardConnect) >
C-APDU C-APDU
(SCardTransmit) > (I-blocks) >
L R-APDU . R-APDU
7 (SCardTransmit success) - (I-blocks)
Disconnect from the card Leave T=CL
(SCardDisconnect) > (Deselect) >
- (Deselect)
b. PC/SC and the embedded APDU interpreter
PC K663 Polling + anticollision -
(all protocols)
application
Clless
reader
Card insert event
(SCardStatus changed)
Connect to the card
(SCardConnect) >

C-APDU

Card-specific function

APDU

(SCardTransmit)
R-APDU

using card-specific protocol
Card-specific response

, interpreter
(SCardTransmit success)

Disconnect from the card -
(SCardDisconnect)

using card-specific protocol)

ISO
14443-4
smartcard

(type A or
type B)

Clless
memory
card

(or NFC Tag,
RFID label,

)

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS

All other brand names, product names, or trademarks belong to th

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

eir respective holders.

PMD15305-AA
page 12 of 106

SPrNQCarc

SeriNngCARD CCID over SeriaL - Developer's Guide

2.4. NFC?

NFC stands for Near Field Communication, which is the case of all communication systems using
low frequencies or very short operating distance. But NFC is now understood as both

= NFCIP-1 (Near Field Communication Interface and Protocol), i.e. the ISO 18092 standard,
which defines a new transport-level protocol sometimes called “peer-to-peer” (but this
name never appears is the standard),

= NFC Forum, an association that promotes the uses of NFC and publishes “application-level”
standards (where 1SO focuses on the technical levels).

SpringCard K663 and derived products are partially compliant with NFCIP-1 (initiator role, passive
communication mode only). Please refer to chapter 6 for details. These products should also
support NFC Forum's applications, but no compliance with NFC Forum's low level requirements is
claimed.

Note that in NFC Forum's literature,

- ISO 14443 type A and ISO 18092 @ 106kbit/s is called NFC-A,
- ISO 14443 type B is called NFC-B,

- JIS:X6319-4 and I1SO 18092 @ 212/424kbit/s is called NFC-F.

2.5. VENDOR-SPECIFIC FEATURES — DIRECT CONTROL OF THE COUPLER

PC/SC's SCardTransmit function implements a communication channel between your application
and the card.

But sometimes the application wants to access some features of the K663 itself: driving the LEDs
or buzzer, getting the serial number... In other words, the application wants to talk to the coupler
and not to the card.

The PC/SC's SCardControl function has been designed to do so. Chapter 7 details the commands
supported by the K663 using this direct communication channel.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard —

page 13 of 106

SeringCARD CCID over SeriaL - Developer's Guide

GLOSSARY — USEFUL TERMS

The following list contains the terms that are directly related to the subject of this document. This
is an excerpt from our technical glossary, available online at:

http://www.springcard.com/blog/technical-glossary/

ICC: integrated-circuit card. This is the standard name for a plastic card holding a silicon
chip (an integrated circuit) compliant with the ISO 7816 standards. A common name is
smartcard.

CD: coupling device or coupler. A device able to communicate with an ICC. This is what
everybody calls a smartcard reader. Technically speaking, it could be seen as a gateway
between the computer and the card.

Microprocessor-based card: an ICC (or a PICC) whose chip is a small computer. This is the
case of high-end cards used in payment, transport, elD/passports, access control... Key
features are security, ability to store a large amount of data and to run an application
inside the chip. Most of the time they implement the command set defined by ISO 7816-4.

Memory card or wired logic card: an ICC (or a PICC) whose chip is only able to store some
data, and features a limited security scheme (or no security scheme at all). They are
cheaper than microprocessor-based cards and therefore are widely used for RFID
traceability, loyalty, access control...

PICC: proximity integrated-circuit card. This is the standard name for any contactless card
compliant with the 1SO 14443 standards (proximity: less than 10cm). This could either be a
smartcard or a memory card, or also any NFC object running in card emulation mode.
Common names are contactless card, or RFID card, NFC Tag.

PCD: proximity coupling device. A device able to communicate with a PICC, i.e. a
contactless coupler compliant with ISO 14443.

RFID: radio-frequency identification. This is the general name for any system using radio
waves for M2M communication (machine to machine, in our case PCD to PICC).

VICC: vicinity integrated circuit card. This is the standard name for any contactless card
compliant with the ISO 15693 standards (vicinity: less than 150cm). Common names are
RFID tag, RFID label.

VCD: vicinity coupling device. A device able to communicate with a VICC, i.e. a contactless
coupler compliant with 1ISO 15693.

NFC: near-field communication. A subset of RFID, where the operating distance is much
shorter than the wavelength of the radio waves involved. This is the case for both ISO
14443: the carrier frequency is 13.56MHz, leading to a wavelength of 22m. The proximity
and vicinity ranges are shorter than this wavelength.

NFC Forum: an international association that aims to standardize the applications of NEC in
the 13.56MHz range. Their main contribution is the NFC Tags, which are nothing more than

http://www.springcard.com/blog/technical-glossary/

springcar —

page 14 of 106

SeringCARD CCID over SeriaL - Developer's Guide

PICCs which data are formatted according to their specifications, so the information they
contain is understandable by any compliant application.

NDEF: NFC Data Exchange Format. The format of the data on the NFC Tags specified by the
NFC Forum.

ISO 7816-1 and ISO 7816-2: This international standard defines the hardware
characteristics of the ICC. The standard smartcard format (86x54mm) is called ID-1. A
smaller form-factor is used for SIM cards (used in mobile phone) or SAM (secure
authentication module, used for payment or transport applications) and is called 1D-000.

ISO 7816-3: This international standard defines two communication protocols for ICCs: T=0
and T=1. A compliant coupler must support both of them.

ISO 7816-4: This international standard defines both a communication scheme and a
command set. The communication scheme is made of APDUs. The command set assumes
that the card is structured the same way as a computer disk drive: directories and files
could be selected (SELECT instruction) and accessed for reading or writing (READ BINARY,
UPDATE BINARY instructions). More than 40 instructions are defined by the standard, but
most cards implement only a small subset, and often add their own (vendor-specific)
instructions.

APDU: application protocol datagram unit. These are the frames that are exchanged at
application-level between an application running on the computer and a smartcard. The
format of those frames is defined by 1ISO 7816-4 and checked by the system's PC/SC stack.
The command (application to card) is called a C-APDU, the response (card to application)
an R-APDU. Note that this is a request/response scheme: the smartcard has no way to send
something to the application unless the application asks for it.

ISO 14443: This international standard defines the PCD/PICC communication scheme. It is
divided into 4 layers:

1. Defines the hardware characteristics of the PICC,
2. Defines the carrier frequency and the bit-level communication scheme,

3. Defines the frame-level communication scheme and the session opening
sequence (anti-collision),

4. Defines the transport-level communication scheme (sometimes called “T=CL”).

The application-level is out of the scope of ISO 14443. Most microprocessor-based PICCs
implement ISO 7816-4 on top of 1ISO 14443-4.

A lot of wired logic PICCs (NXP Mifare family, ST Micro Electronics ST/SR families, to name
a few) implements only a subset of ISO 14443, and have their own set of functions on top
of either ISO 14443-2 or I1SO 14443-3.

Note that I1SO 14443-2 and I1SO 14443-3 are divided into 2 protocols called 'A' and 'B'. A
PCD shall implement both, but the PICCs implement only one of them? Four

2 Yet some NFC objects may emulate both an ISO 14443-A and an ISO 14443-B card.

springcar —

page 15 of 106

SeringCARD CCID over SeriaL - Developer's Guide

communication baud rates are possible: 106 kbit/s is mandatory, higher baud rates (212,
424 or 848 kbit/s) are optional.

ISO 15693: This international standard defines the VCD/VICC communication scheme. It is
divided into 3 layers:

1. Defines the hardware characteristics of the VICC,
2. Defines the carrier frequency and the bit-level communication scheme,

3. Defines the frame-level communication scheme, the session opening sequence
(anti-collision/inventory), and the command set of the VICC.

All VICCs are memory chips. Their data storage area is divided into blocks. The size of the
blocks and the number of them depend on the VICC.

Note that ISO 18000-3 mode 1 is the same as ISO 156933.

ISO 18092 or NFCIP-1: This international standard defines a communication scheme (most
of the time named “peer to peer mode”) where two peer “objects” are able to
communicate together (and not only a PCD and a PICC). The underlying protocol is ISO
14443-A at 106 kbit/s and JIS:X6319-4 (aka Sony Felica protocol) at 212 and 424 kbit/s.

Initiator: according to NFCIP-1, the NFC object that is the “master” of the communication
with a peer known as target. A PCD is a sort of initiator.

Target: according to NFCIP-1, the NFC object that is the “slave” in the communication with
a peer known as initiator. A PICC is a sort of target.

NFC-DEP: NFC Data Exchange Protocol. This is the name used by the NFC Forum for the ISO
18092 “high level” protocol. After an initial handshaking (ATR_REQ/ATR_RES), the initiator
and the target exchanges transport-level blocks (DEP_REQ/DEP_RES).

LLCP: Logical Link Control Protocol. A network protocol specified by the NFC Forum on top
of NFC-DEP.

SNEP: Simple NDEF Exchange Protocol. An application protocol specified by the NFC Forum
to exchange NDEF messages on top of LLCP.

ISO 21481 or NFCIP-2: This international standard defines how a NFC object shall also be
able to communicate using ISO 14443 and ISO 15693 standards.

Mifare: This trademark of NXP (formerly Philips Semiconductors) is the generic brand
name of their PICC products. Billions of Mifare Classic cards have been deployed since the
90's. This is a family of wired-logic PICCs were data storage is divided into sectors and
protected by a proprietary* stream cipher called CRYPTO1. Every sector is protected by 2
access keys called “key A” and “key B”>. NXP also offers another family of wired-logic PICCs
called Mifare UltralLight (adopted by the NFC Forum as NFC Type 2 Tags). Mifare SmartMX

* 1SO 15693 has been written by the workgroup in charge of smartcards, and then copied by the workgroup in charge of RFID into
ISO 18000, the large family of RFID standards.

* And totally broken. Do not rely on this scheme in security-sensitive applications!
> Atypical formatting would define key A as the key for reading, and key B as the key for reading+writing.

PMD15305-AA
page 16 of 106

SeringCARD CCID over SeriaL - Developer's Guide

(and former Pro/ProX) is a family of microprocessor-based PICCs that may run virtually any
smartcard application, typically on top a JavaCard operating system. Mifare Desfire is a
particular microprocessor-based PICC that runs a single general-purpose application.

Felica: This trademark of Sony is the generic brand name of their PICC products. The
underlying protocol has been standardized in Japan (JIS:X6319-4) and is used by 1SO 18092
at 212 and 424 kbit/s. The Felica standard includes a Sony-proprietary security scheme that
is not implemented in SpringCard's products. Therefore, only the Felica chips configured to
work without security (“Felica Lite”, “Felica Lite-S”, or NFC Type 3 Tags) are supported.

Ar J}@
/7‘ Y e
Spr" . xuy 1 PMD15305-AA

page 17 of 106

SeringCARD CCID over SeriaL - Developer's Guide

3. Tue SCARD_On_MCU uBrary

PC/SC has been designed with high-end operating systems in mind. It is not directly suitable to be
used in a micro-controller (MCU).

To ease the adoption of K663 as a peripheral to a low-end MCU, SpringCard provides the free
SCARD_On_MCU library. The library implements the CCID over Serial protocol and exposes 4
functions that gives the taste of PC/SC without the weight of the drivers and middle-ware stack:

scardTransmit is the communication function. The application sends a C-APDU and retrieve
the card's R-APDU (in the case of a wired-logic card, the application communicates with
the embedded APDU interpreter and not directly with the card). This is the equivalent of
SCardTransmit,

scardConnect powers up the card and retrieves its ATR. This is the equivalent of
SCardConnect,

scardDisconnect powers down the card. This is the equivalent of SCardDisconnect,
scardStatus is used to monitor the card presence. This is the equivalent of SCardStatus.

The SCARD_On_MCU library is written in ANSI C with portability in mind (even it is tests mostly on
a Windows platform).

It is available on GitHub:

https://github.com/springcard/scard on _mcu

3.1. GETTING STARTED
3.1.1. Download the library

You may use Git to clone the project from GitHub, or download an archive of the project at

https://github.com/springcard/scard on mcu/archive/master.zip

3.1.2. Tailor the library to your target

a. The project.h file

Use the src/project.h to typedef (or define) the types that are used among all the project.

https://github.com/springcard/scard_on_mcu/archive/master.zip
https://github.com/springcard/scard_on_mcu

PMD15305-AA
page 18 of 106

springcar

SeringCARD CCID over SeriaL - Developer's Guide

b. The HAL

You are responsible to implement a hardware-abstraction layer that provides 3 services:

1. Communication with the K663 through one UART (serial line) of your MCU. The TX part
doesn't have to be interrupt-driven, but the RX part must be implemented within an ISR,

2. Synchronization between the RX ISR and the “K663 handler” task,
3. Delay the execution of the “K663 handler” task for a specified amount of time.

If you are working with a RTOS, the “K663 handler” task may run in a separate context task.
Otherwise, the “K663 handler” task must be embedded into the main (and single) task of your
MCU.

Use file src/hal/hal_skel_mcu.c as template to write your HAL.
You will also have to replace or route printf calls to an equivalent function in order to be able to
trace what's going on in the library.

C. Testing the library

File src/main.cis a short examples on how the K663 could be operated through the library.

You'll need a Mifare UltraLight Card or a NFC Forum Type 2 Tag to run the test. Launch the
program, place the test PICC in front of the antenna, and check that the program “sees” the PICC,
shows its UID and retrieve some data from it.

3.2. REFERENCE DOCUMENTATION OF THE cOMMUNICATION BETWEEN THE MCU anp THE K663

The K663 uses a protocol known as “CCID over Serial” which is fully described in SpringCard
document ref. PMD15282.

Please refer to this document to debug or enhance the library on your target platform.

3.3. REFERENCE DOCUMENTATION OF THE LIBRARY

The complete documentation is available as HTML files under the docs sub-folder within the
library archive.

springcard —

page 19 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

4. THe emBepDeD APDU INTERPRETER

4.1. Basis

The role of the embedded APDU interpreter, running in the K663, is to 'emulate’' a standard
smartcard even if the coupler communicates with a non-standard or wired-logic card.

It also provides useful functions to control the low-level behaviour of the coupler.

4.1.1. CLA byte of the embedded APDU interpreter

In order to work with non ISO 7816-4 cards as if they were smartcards, the embedded APDU
interpreter obeys to the same rules, offering its own list of INStructions under the reserved class
CLA=,FF.

Default class is FF. This means that every APDU starting with CLA= ,FF will be interpreted by the
K663, and not forwarded by the card.

a. Changing the CLA byte of the embedded APDU interpreter

The CLA byte of the embedded APDU interpreter is stored in register ,B2 of K663’s non volatile
memory (see § 8.4.2).

Note: in the following paragraphs, documentation of the APDUs is written with CLA= ,FF. Change
this to match your own CLA if necessary.

b. Disabling the embedded APDU interpreter

Define CLA byte = ,00 (register ,B2=,00, see § 8.4.2) to disable the embedded APDU interpreter.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard T

SeriNngCARD CCID over SeriaL - Developer's Guide

4.1.2. Status words returned by the embedded APDU interpreter

SW1 SW2 | Meaning
»90 #00 | Success

n67 h00 | Wrong length (Lc incoherent with Data In)

n68 »00 | CLA byte is not correct

h6A »81 | Function not supported (INS byte is not correct), or not available for the
selected PICC/VICC

n6B K00 | Wrong parameter P1-P2

n6F n01 | PICC mute or removed during the transfer

Some functions provided by the embedded APDU interpreter may return specific status words.
This behaviour is documented within the paragraph dedicated to each function.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15305-AA
page 21 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.1.3. Embedded APDU interpreter instruction list
Instruction INS Notes (see below)
LOAD KEY h82 c
GENERAL AUTHENTICATE h86 C
READ BINARY nBO A
ENVELOPE hC2 B
GET DATA hCA C
UPDATE BINARY nD6 A
READER CONTROL nFO D
MICORE CONTROL nF1 D
MIFARE CLASSIC READ nF3 D
MIFARE CLASSIC WRITE nF4 D
MIFARE CLASSIC VALUE nF5 D
RFID MEMORY CONTROL nF6 D
CONTACTLESS SLOT CONTROL nFB D
TEST .FD D
ENCAPSULATE nFE D
Notes:

A Function fully implemented according to PC/SC standard

B Function implemented according to PC/SC standard, but some feature are not supported
C Function implemented according to PC/SC standard, but also provides vendor-specific

options
D Vendor-specific function

S r“ . qalde, PMD15305-AA
o e page 22 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.2. Instructions perINED BY THE PC/SC stanparD (v2 parT 3)
4.2.1. GET DATA instruction

The GET DATA instruction retrieves information regarding the inserted PICC. It can be used with
any kind of PICC, but the returned content will vary with the type of PICC actually in the slot.

GET DATA command APDU
CLA INS P1 P2 Lc Data In Le
See See
nFF hCA below below)) n00

GET DATA command parameters

PL | P2 |Action Fw

Standard PC/SC-defined values

n00 h00 |Serial number of the PICC

-1SO 14443-A : UID (4, 7 or 11 bytes)
-1SO 14443-B : PUPI (4 bytes)

-1S0 15693: UID (8 bytes)

- Innovatron : DIV (4 bytes)

- JIS:X6319-4 : IDm (8 bytes)

- others: see chapter 5 for details

SpringCard specific values

n01 h00 |- 1SO 14443-A : historical bytes from the ATS
- ISO 14443-B : INF field in ATTRIB response
- JIS:X6319-4 : PMm (8 bytes)

-1SO 18092 : Gt bytes in ATR_RES

- others: see chapter 5 for details

nFO n00 | Complete identifier of the PICC:

- 1SO 14443-A: ATQA (2 bytes) + SAK (1 byte) + UID

- 1SO 14443-B: complete ATQB (11 or 12 bytes)®

- 1SO 15693: answer to GET SYSTEM INFORMATION command’
- Innovatron: REPGEN

- Innovision/Broadcom/NFC Forum Type 1 Tag: HRO, HR1 >1.75
- JIS:X6319-4 : IDm and PMm (16 bytes)
-1SO 18092 : complete ATR_RES

® SpringCard PC/SC Couplers are ready to support the extended ATQB (12 bytes), but since a lot of PICC currently in circulation
don't reply to the REQB command with the “extended” bit set, this feature is not enabled by default.

7 If the card doesn’t support the GET SYSTEM INFORMATION COMMAND, a valid SYSTEM INFORMATION value is constructed,
including the UID and the DSFID byte.

PMD15305-AA
page 23 of 106

SeringCARD CCID over SeriaL - Developer's Guide

P1 P2 |Action
nF1 100 |Type of the PICC/VICC, according to PC/SC part 3 supplemental
document: PIX.SS (standard, 1 byte) + PIX.NN (card name, 2 bytes)
See chapter 5.1 for details
nF1 101 | NFC Tag® compliance:
- ,01 if the PICC is recognized as a NFC Type 1 Tag
-,02 if the PICC is recognized as a NFC Type 2 Tag
- ,03 if the PICC is recognized as a NFC Type 3 Tag
- ,00 otherwise
nF2 K00 | “Short” serial number of the PICC
- 1SO 14443-A: UID truncated to 4 bytes, in “classical” order
- others: same as P1,P2=,00,,00
nFA n00 | Card’s ATR
nFC n00 |ISO 14443 communication indexes on 2 bytes (DSI, DRI)
WFC 101 | PICC/VICC - K663 baudrate (DS in kbit/s, 2 bytes, MSB first)
nFC 102 | K663 = PICC/VICC baudrate (DR in kbit/s, 2 bytes, MSB first)
nFC n03 | Index of the active antenna on 1 byte
nFF h00 | Product serial number (raw value on 4 bytes)
nFF w01 | Not available for K663
nFF 102 | Name of the RF interface component (“RC663”)
nFF »81 |Vendor name in ASCII (“SpringCard”)
nFF n82 | Product name in ASCII
nFF n83 | Product serial number in ASCII
nFF »84 | Product USB identifier (VID/PID) in ASCII
nFF n85 | Product version (“x.xx”) in ASCII
GET DATA response
Data Out Sw1 | sw2
XX ... XX See below
GET DATA status word
SW1 SW2 | Meaning
h90 h00 | Success
n62 n82 | End of data reached before Le bytes (Le is greater than data length)
h6C XX | Wrong length (Le is shorter than data length, XX in SW2 gives the correct value)

8 Please refer to NFC Forum'’s specifications for details. Note that NFC Forum Type 4 Tags are “standard” contactless smartcards; it
is up to the application level to send the proper SELECT APPLICATION to recognize them.

sprinQcarc —

page 24 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.2.2. LOAD KEY instruction

The LOAD KEY instruction loads a 6-byte Mifare Classic access key (CRYPTO1) into the K663’s
memory.

LOAD KEY command APDU

CLA INS P1 P2 Lc Data In Le
JFF .82 Key Key 106 Key value -
location index

LOAD KEY command parameter P1 (key location)

P1
h00 | The key is to be loaded in K663’s volatile memory

n20 | The key is to be loaded in K663’s non-volatile memory (secure E2PROM inside the RC
chipset)

LOAD KEY command parameter P2 (key index)

When P1 = ,00, P2 is the identifier of the key into K663’s volatile memory. The memory has the
capacity to store up to 4 keys of each type (A or B).

P2 = ,00 to P2 = ,03 are “type A” keys,
P2 = ,10to P2 = .13 are “type B” keys.

When P1 = ,20, P2 is the identifier of the key into the K663's non-volatile memory (if available).
This memory can store up to 16 keys of each type (A or B).

P2 = ,00 to P2 = ,OF are “type A” keys,
P2 = ,10to P2 = ,1F are “type B” keys.

Note there's no way to read-back the keys stored in either volatile or non-volatile memory.

LOAD KEY response

SW1 SW2
See below

springcard —

page 25 of 106

SeringCarD CCID over SeriaL - Developer's Guide

LOAD KEY status word

SW1

SW2

Meaning

n90

100

Success

n69

h86

Volatile memory is not available

69

h37

Non-volatile memory is not available

69

38

Key index (P2) is not in the allowed range

69

89

Key length (Lc) is not valid

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS

All other brand names, product names, or trademarks belong to their respective holders

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

®
®

springcarc —

page 26 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.2.3. GENERAL AUTHENTICATE instruction

The GENERAL AUTHENTICATE instruction performs a Mifare Classic authentication (CRYPTO1).
The application must provide the index of the key to be used; this key must have been loaded into
the K663 through a previous LOAD KEY instruction.

Do not invoke this function if the currently activated PICC is not a Mifare Classic!

GENERAL AUTHENTICATE command APDU

CLA INS P1 P2 Lc Data In Le
hFF h86 hOO hOO h05 See below -

GENERAL AUTHENTICATE Data In bytes

Byte O | Byte 1 | Byte 2 | Byte 3 | Byte 4
K01 100 Block Key Key
number | location | index
or Key
type

The block number (byte 2) is the address on the Mifare card, where the application tries to be
authenticated (note: this is the block number, not the sector number).

The key location or Key type (byte 3) must be either:

»60 for authentication using a CRYPTO1 “A” key (standard PC/SC-defined value),
»61 for authentication using a CRYPTO1 “B” key (standard PC/SC-defined value),
Same value as the P1 parameter used in the LOAD KEY instruction: ,00 or ,20 (SpringCard
specific value).
The key index (byte 4) is defined as follow:

If key type (byte 3) is 1,60, use values ,00 to ,03 to select one of the “A” keys stored in the K663's
volatile memory, and values ,20 to ,2F to select one of the “A” keys stored in the K663's non-
volatile memory (if available),

If key type (byte 3) is ,61, use values ,00 to ,03 to select one of the “B” keys stored in the K663's
volatile memory, and values ,20 to ,2F to select one of the “B” keys stored in the K663's non-
volatile memory (if available),

If key type (byte 3) is either ,00 or ,20 (same value as the P1 parameter used in the LOAD key
instruction), choose one of the values allowed for the P2 parameter in the same LOAD key
instruction (SpringCard specific value).

page 27 of 106

springcard —

SeriNngCARD CCID over SeriaL - Developer's Guide

GENERAL AUTHENTICATE response

SW1 | sw2

See below

GENERAL AUTHENTICATE status word

SW1

SW2

Meaning

n90

n00

Success

69

h32

CRYPTO1 authentication failed

69

36

Key location or type (byte 3) is not valid (or not available for this coupler)

69

38

Key index (byte 4) is not in the allowed range

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS

All other brand names, product names, or trademarks belong to their respective holders

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

S rln COX((PMD15305-AA
@ il W page 28 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.2.4. READ BINARY instruction

The READ BINARY instruction retrieves data from a memory card (wired-logic PICC or VICC). Refer
to chapter 5 for details.
For any PICC/VICC but Mifare Classic, this instruction is executed without any prerequisite.
For Mifare Classic, to be able to read the sector's data, the application must be authenticated on
the card's sector. The application must therefore invoke GENERAL AUTHENTICATE instruction
(with a valid key A or key B for the sector) before invoking the READ BINARY instruction. Using the
MIFARE CLASSIC READ instruction instead (§ 4.3.1) could be easier and may shorten the
transaction time.

READ BINARY command APDU

CLA INS P1 P2 Lc Data In Le
WFF wBO | Address | Address - - XX
MSB LSB

P1 and P2 form the address that will be sent to the PICC/VICC in its specific read command. Most
PICC/VICC are divided into small blocks (sometimes called pages). The address is a block number,
and not to an absolute byte offset in memory.

Both the allowed range for the address and the value for Le depend on the capabilities of the
PICC/VICC. Please always refer to its datasheet for details. Note that Le = ,00 should always work,
provided that the address is valid.

For Mifare Classic, P1,P2 is the address of the block (,0000 to ,00FF), but remember that the
authentication is made on a per-sector basis. A new authentication must be performed every time

you have to access another sector.
For a NFC Type 2 Tag, P2 is the block number, and P1 the sector number if the PICC supports this

feature. Set P1 to ,00 if it is not the case.

READ BINARY response

Data Out SW1 [sw2
XX ... XX See below

springcard —

page 29 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

READ BINARY status word

SW1 SW2 Will return in Data Out

»90 »00 Success

n62 n82 End of data reached before Le bytes (Le is greater than data length)

h69 n81 Command incompatible

n69 n82 Security status not satisfied

hOA n82 Wrong address (no such block or no such offset in the PICC/VICC)

n6C XX Wrong length (Le is shorter than data length, XX in SW2 gives the correct value)

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

®
®

springcarc —

page 30 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.2.5. UPDATE BINARY instruction

The UPDATE BINARY instruction writes data into a memory card (wired-logic PICC or VICC). Refer
to chapter 5 for details.

For any PICC/VICC but Mifare Classic, this instruction is executed without any prerequisite.

For Mifare Classic, to be able to read the sector's data, the application must be authenticated on
the card's sector. Your application must always invoke GENERAL AUTHENTICATE instruction (with
a valid key A or key B for the sector) before invoking the UPDATE BINARY instruction. Using the
MIFARE CLASSIC WRITE instruction instead (§ 4.3.2) could be easier and may shorten the
transaction time.

UPDATE BINARY command APDU

CLA INS P1 P2 Lc Data In Le
WFF wD6 | Address | Address XX Data -
MSB LSB

P1 and P2 form the address that will be sent to the PICC/VICC in its specific write command. Most
PICC/VICC are divided into small blocks (sometimes called pages). The address is a block number,
and not to an absolute byte offset in memory.

Both the allowed range for the address and the value for Lc depend on the capabilities of the PICC.
Please always refer to its datasheet for details.

For Mifare Classic, P1,P2 is the address of the block (,0000 to ,00FF), but remember that the
authentication is made on a per-sector basis. A new authentication must be performed every time
you have to access another sector. Lc must be ,10 (a block is 16-B long).

For a NFC Type 2 Tag, P2 is the block number, and P1 the sector number if the PICC does support
this feature. Set P1 to ,00 if it is not the case. Lc must be ,04 (a block is 4-B long).

UPDATE BINARY response

SW1 [sw2
See below

springcard —

page 31 of 106

SeringCarD CCID over SeriaL - Developer's Guide

UPDATE BINARY status word

SW1 SW2 | Will return in Data Out

»90 »00 Success

n69 h82 Security status not satisfied

hOA n82 Wrong address (no such block or no such offset in the PICC)

h6A n84 Wrong length (trying to write too much data at once)

Important disclaimer

Most PICC/VICC have specific areas:

- that can be written only once (OTP: one time programming or fuse bits),

- and/or that must be written carefully because they are involved in the security scheme of the
chip (lock bits),

- and/or because writing an invalid value will make the card unusable (sector trailer of a Mifare
Classic for instance).

Before invoking UPDATE BINARY, always double check where you're writing, and for the sensitive
addresses, what you're writing!

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

B®

sprinQcarc —

page 32 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.3. SprRINGCARD-SPECIFIC INSTRUCTIONS FOR THE CONTACTLESS SLOT

4.3.1. MIFARE CLASSIC READ instruction

The MIFARE CLASSIC READ instruction retrieves data from a Mifare Classic PICC (e.g. Mifare 1K or
Mifare 4K, or Mifare Plus in level 1).

The difference with READ BINARY lies in the authentication scheme:

With the READ BINARY instruction, authentication must be performed before, using the
GENERAL AUTHENTICATE instruction,

With the MIFARE CLASSIC READ instruction, the authentication is performed automatically
by the K663, trying every keys one after the other, until one succeed.

This “automatic” authentication makes MIFARE CLASSIC READ instruction an interesting helper to
read Mifare data easily.

Do not invoke this function if the currently activated PICC is not a Mifare Classic!
a. MIFARE CLASSIC READ using coupler’s keys

In this mode, the application doesn't specify anything. The K663 tries every keys he knows (both
permanent keys in E2PROM and temporary keys previously loaded in volatile memory — use LOAD
KEY to do so) until one succeeds.

Since the coupler must try all the keys, this method may take up to 1000ms. The ordering of the
keys in coupler's memory is very important to speed-up the process: the upper the right key is in
the coupler's memory, the sooner the authentication will succeed.

Note that the coupler tries all “type A” keys first, and only afterwards all the “type B” keys. This
behaviour has been chosen because in 95% of Mifare applications, the “type A” key is the
preferred key for reading (where the “type B” key is used for writing).

MIFARE CLASSIC READ command APDU

CLA INS P1 P2 Lc Data In Le
nFF nF3 x00 Block Number - - XX

Refer to the READ BINARY command (§ 4.2.4) for response and status words.

PMD15305-AA
page 33 of 106

SeringCARD CCID over SeriaL - Developer's Guide

b. MIFARE CLASSIC READ selecting a key in the coupler

In this mode, the application chooses one of the key previously loaded in the K663 through the
LOAD KEY instruction.

MIFARE CLASSIC READ command APDU, selecting a key

CLA INS P1 P2 Lc Data In Le
Key Ke
nFF wF3 100 Block Number |,02 Location y XX
Index
or Type

The understanding and values for bytes Key location or Key type and Key index are documented
in § 4.2.3 (GENERAL AUTHENTICATE instruction).

Refer to the READ BINARY instruction (§ 4.2.4) for response and status words.
C. MIFARE CLASSIC READ with specified key

In this mode, the application provides the 6-B value of the key to the K663.

The coupler tries the key as a “type A” first, and only afterwards as a “type B”.

MIFARE CLASSIC READ command APDU, with specified key

CLA INS P1 P2 Lc Data In Le
Key value
(6 bytes)

wFF WF3 »00 Block Number |,06 XX

Refer to the READ BINARY instruction (§ 4.2.4) for response and status words.

page 34 of 106

springcard —

SeriNngCARD CCID over SeriaL - Developer's Guide

4.3.2. MIFARE CLASSIC WRITE instruction

The MIFARE CLASSIC WRITE instruction writes data into a Mifare Classic PICC (e.g. Mifare 1K or
Mifare 4K, or Mifare Plus in level 1).

The difference with UPDATE BINARY lies in the authentication scheme:

= With the UPDATE BINARY instruction, authentication must be performed before, using the
GENERAL AUTHENTICATE instruction,

m With the MIFARE CLASSIC WRITE instruction, the authentication is performed
automatically by the K663, trying every keys one after the other, until one succeed.

This “automatic” authentication makes MIFARE CLASSIC WRITE instruction an interesting helper to
write Mifare data easily.

Do not invoke this function if the currently activated PICC is not a Mifare Classic!

Important disclaimer

Writing sector trailers (security blocks) is possible as long as the sector's current access condition
allows it, but Mifare sector trailers have to follow a specific formatting rule (mix-up of the access
conditions bits) to be valid. Otherwise, the sector becomes permanently unusable.

Before invoking MIFARE CLASSIC WRITE, always double check that you're not writing a sector
trailer, and if you really have to do so, make sure the new content is formatted as specified in the
datasheet of the PICC.

a. MIFARE CLASSIC WRITE using coupler’s keys

In this mode, the application doesn't specify anything. The K663 tries every key he knows (both
permanent keys in E2PROM and temporary keys previously loaded in volatile memory) until one
succeeds.

Since the coupler must try all the keys, this method may take up to 1000ms. The ordering of the
keys in coupler's memory is very important to speed-up the process: the upper the right key is in
the coupler's memory, the sooner the authentication will succeed.

Note that the coupler tries all “type B” keys first, and only afterwards all the “type A” keys. This
behaviour has been chosen because in 95% of Mifare applications, the “type B” key is the
preferred key for writing®.

® Mifare Classic cards issued by NXP are delivered in “transport configuration”, with no “B” key and an “A” key allowed for both
reading and writing. This “transport configuration” gives poorest writing performance ; card issuer must start the card
personalisation process by enabling a “B” key for writing.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

sprinQcarc —

page 35 of 106

SeringCARD CCID over SeriaL - Developer's Guide

MIFARE CLASSIC WRITE command APDU

CLA INS P1 P2 Lc Data In Le
nFF nF4 100 Block Number | XX XX ... XX -

Lc must be a multiple of 16.

Refer to the UPDATE BINARY instruction (§ 4.2.5) for response and status words.
b. MIFARE CLASSIC WRITE selecting a key in the coupler

In this mode, the application chooses one the key previously loaded in the K663 through the LOAD
KEY instruction.

MIFARE CLASSIC WRITE command APDU, selecting a key

CLA INS P1 P2 Lc Data In Le
nFF nF4 »00 Block Number XX See below -

MIFARE CLASSIC WRITE command APDU, selecting a key: Data In bytes

Bytes O to Lc-3 Byte Lc-2 | Byte Lc-1
Data to be written Key
. Location |Key Index
Itiple of 16 byt
(multiple o ytes) or Type

The understanding and values for bytes Key location or Key type and Key index are documented
in § 4.2.3 (GENERAL AUTHENTICATE instruction).

Refer to the UPDATE BINARY instruction (§ 4.2.5) for response and status words.
c. MIFARE CLASSIC WRITE with specified key
In this mode, the application provides the key to the K663.

The coupler tries the key as a “type B” first, and only afterwards as a “type A”.

MIFARE CLASSIC WRITE command APDU, with specified key

CLA INS P1 P2 Lc Data In Le
nFF wF4 »00 Block Number XX See below -

springcard e

SeringCarD CCID over SeriaL - Developer's Guide

MIFARE CLASSIC WRITE command APDU, with specified key: Data In Bytes

Bytes O to Lc-7 Bytes Lc-6 to Lc-1
Data to be written Key value
(multiple of 16 bytes) (6 bytes)

Lc =6 + 16 x (number of blocks to be written).

Refer to the UPDATE BINARY instruction (§ 4.2.5) for response and status words.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15305-AA
page 37 of 106

springcard

SeringCARD CCID over SeriaL - Developer's Guide

4.3.3. MIFARE CLASSIC VALUE instruction

The MIFARE CLASSIC VALUE instruction makes it possible to invoke the DECREMENT, INCREMENT,
and RESTORE functions of a Mifare Classic PICC (e.g. Mifare 1K or Mifare 4K, or Mifare Plus in level
1), followed by a TRANSFER function.

The DECREMENT, INCREMENT, RESTORE (and TRANSFER) functions could be performed only on the
blocks that have been formatted as VALUE block in the sector trailer (access condition bits). Do not
invoke this function on DATA blocks, and do not invoke this function if the currently activated PICC
is not a Mifare Classic!

MIFARE CLASSIC VALUE opcode, operand, and transfer address

The P1 parameter in the MIFARE CLASSIC VALUE command APDU in the PICCs' operation code
(opcode), as defined in Mifare Classic specification. Allowed values are:

hC1 for INCREMENT
hCO for DECREMENT
nC2 for RESTORE
All three operations requires an operand. The operand is a 4-byte signed integer.

INCREMENT operation: the operand must be > 0 (between 00000001 and ,7FFFFFFF). The
operand is added to the current value of the source block, and the result is kept by the
PICCin a register,

DECREMENT operation: the operand must be > 0 (between ,00000001 and ,7FFFFFFF). The
operand is subtracted from the current value of the source block, and the result is kept by
the PICC in a register,

RESTORE operation: the operand must be 0 (,00000000). The PICC copies the current value
of the source block into a register.

After the INCREMENT, DECREMENT or RESTORE operation has been performed by the PICC, the
K663 invokes the TRANSFER operation: the value of the register is written into a target block.

If the destination block number is not the same as the source block number, the original
value remains unchanged in the source block (this is a sort of “backup” feature),

If the destination block number is the same as the source block number, or not destination
block number is defined, then the source block is overwritten with the new value.

a. MIFARE CLASSIC VALUE using coupler’s keys

In this mode, the application doesn't specify anything. The K663 tries every keys he knows (both
permanent keys in E2PROM and temporary keys previously loaded in volatile memory) until one
succeeds.

®
®

springcarc —

page 38 of 106

SeringCARD CCID over SeriaL - Developer's Guide

Because the coupler must try all the keys, this method can take up to 1000ms. The ordering of the
keys in coupler's memory is very important to speed-up the process: the upper the right key is in
the coupler's memory, the sooner the authentication will succeed.

For DECREMENT and RESTORE operations, the coupler tries all “type A” keys first, and only
afterwards all the “type B” keys.

For INCREMENT operation, the coupler tries all “type B” keys first, and only afterwards all the
“type A” keys.

The destination block could optionally be specified at the end of the command APDU. If not, the
source block is overwritten by the TRANSFER operation.

MIFARE CLASSIC VALUE command APDU, using coupler's key, without backup
CLA INS P1 P2 Lc Data In Le

Source Operand
hFF hF5 OpCOde block h04 (4B — MSB first))

MIFARE CLASSIC VALUE command APDU, using coupler's key, with backup

CLA INS P1 P2 Lc Data In Le
Source Operand Dest.
oFF|FS | Opcode e 1005 e msersy | block |

Refer to the UPDATE BINARY instruction (§ 4.2.5) for response and status words.
b. MIFARE CLASSIC VALUE selecting a key in the coupler

In this mode, the application chooses one the key previously loaded in the K663 through the LOAD
KEY instruction.

The destination block could optionally be specified at the end of the command APDU. If not, the
source block is overwritten by the TRANSFER operation.

MIFARE CLASSIC VALUE command APDU, selecting a key, without backup

CLA INS P1 P2 Lc Data In Le
Key
K
wFF nF5 Opcode source 106 Operand location 'ey -
block (4B — MSB first) index
or Type

®
®

springcarc —

page 39 of 106

SeringCARD CCID over SeriaL - Developer's Guide

MIFARE CLASSIC VALUE command APDU, selecting a key, with backup

CLA INS P1 P2 Lc Data In Le
Key
Source Operand . Key Dest.
nFF nF5 Opcode block n07 (48 — MSB firsy location index block
or Type

The understanding and values for bytes Key location or Key type and Key index are documented
in § 4.2.3 (GENERAL AUTHENTICATE instruction).

Refer to the UPDATE BINARY instruction (§ 4.2.5) for response and status words.
c. MIFARE CLASSIC VALUE with specified key

In this mode, the application provides the key to the K663.

For DECREMENT and RESTORE operations, the coupler tries the key as a “type A” first, and only
afterwards as a “type B”.

For INCREMENT operation, the coupler tries the key as a “type B” first, and only afterwards as a
Iltype AII-

The destination block could optionally be specified at the end of the command APDU. If not, the
source block is overwritten by the TRANSFER operation.

MIFARE CLASSIC VALUE command APDU, key specified, without backup

CLA INS P1 P2 Lc Data In Le
Source Operand Key value
nFF nF> Opcode block n0A (4B — MSB first) (6B))

MIFARE CLASSIC VALUE command APDU, key specified, with backup

CLA INS P1 P2 Lc Data In Le
Source Operand Key value Dest.
nFF hFS Opcode |, .~ [n0B (4B-MsBfirst) | (6B) block

Refer to the UPDATE BINARY instruction (§ 4.2.5) for response and status words.

sprinQcarc —

page 40 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.3.4. RFID MEMORY CONTROL instruction

The RFID MEMORY CONTROL instruction gives access to some functions of RFID wired-logic PICCs
or VICCs that have no equivalent in the smartcard world.

For instance, Reading to / Writing from a RFID memory chip maps to READ BINARY / UPDATE
BINARY which are “standards” instructions defined by ISO 7816. But ISO 7816 has no equivalent
for a lot of functions defined in ISO 15693, such as “Write DSFID”, “Lock AFI”, and much more.

Therefore, the RFID MEMORY CONTROL instruction is a SpringCard-defined function that eases
operating ISO 15693 and related VICCs, such as EM4134.

a. Read Single Block

This function is available for ISO 15693 and EM4134 VICCs.
This function is a low-level alternative to READ BINARY.

RFID MEMORY CONTROL : Read Single Block command APDU
CLA INS P1 P2 Lc Data In Le

FF o LF6 20 00 |01 [Address o0

b. Write Single Block

This function is available for ISO 15693 and EM4134 VICCs.
This function is a low-level alternative to UPDATE BINARY.

RFID MEMORY CONTROL : Write Single Block command APDU

CLA INS P1 P2 Lc Data In Le
FF F6 21 00 h01 Address | Data i
+Len (1B) (Len)

springcard

PMD15305-AA
page 41 of 106

SeringCARD CCID over SeriaL - Developer's Guide

C. Lock Block

This function is available for 1ISO 15693 and EM4134 VICCs.

RFID MEMORY CONTROL : Lock Block command APDU

CLA INS P1 P2 Lc Data In Le

FF o |WF6 |22 |00 |01 |Address

d. Read Multiple Blocks

This function is available for ISO 15693 VICCs only.
This function is a low-level alternative to READ BINARY.

RFID MEMORY CONTROL : Read Multiple Blocks command APDU

CLA INS P1 P2 Lc Data In Le
Address | Count
nFF nF6 h23 h00 h01 (18) (15) 100
e. Write Multiple Blocks
This function is available for ISO 15693 VICCs only.
This function is a low-level alternative to UPDATE BINARY.
RFID MEMORY CONTROL : Write Multiple Block command APDU
CLA INS P1 P2 Lc Data In Le
2
FF F6 24 00 h0 Address | Count Data i
+Len (1B) (1B) (Len)
f. Write AFI
This function is available for ISO 15693 VICCs only.
RFID MEMORY CONTROL : Write AFI command APDU
CLA INS P1 P2 Lc Data In Le
AFI
nFF nF6 h27 h00 h01 (15) -

B®

sprinQcarc —

page 42 of 106

SeringCARD CCID over SeriaL - Developer's Guide

g. Lock AFI
This function is available for ISO 15693 VICCs only.

RFID MEMORY CONTROL : Lock AFI command APDU

CLA INS P1 P2 Lc Le
hFF hF6 h28 hOO hOO -

h. Write DSFID

This function is available for ISO 15693 VICCs only.

RFID MEMORY CONTROL : Write DSFID command APDU
CLA INS P1 P2 Lc Data In Le

FF .F6 129 .00 .01 EBS)F'D

i. Lock DSFID

This function is available for ISO 15693 VICCs only.

RFID MEMORY CONTROL : Lock DSFID command APDU

CLA INS P1 P2 Lc Le
nFF nF6 h2A h00 n00 -
J. Get System Information

This function is available for ISO 15693 VICCs only.

RFID MEMORY CONTROL : Get System Information command APDU

CLA INS P1 P2 Lc Le
nFF nF6 h2A n00 - n00

Note: the K663 always sends the Get system information command to the VICC, as part of the
discovery process. Invoke the GET DATA instruction (§ 4.2.1) to retrieve the value already returned
by the VICC to the K663.

springcard —

page 43 of 106

SeringCarD CCID over SeriaL - Developer's Guide

k. Get Multiple Block Security

This function is available for ISO 15693 VICCs only.

RFID MEMORY CONTROL : Get Multiple Block Security command APDU

CLA INS P1 P2 Lc DataIn Le
JFF F6 .24 .00 .02 Address | Count)
(18) (1B)

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

®
®

springcarc —

page 44 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.3.5. CONTACTLESS SLOT CONTROL instruction

The CONTACTLESS SLOT CONTROL instruction allows pausing and resuming the card tracking
mechanism of the contactless slot.

This is useful because card tracking implies sending commands to the PICC periodically (and
watch-out its answer). Such commands may have unwanted side-effects, such as breaking the
atomicity between a pair of commands. Switching the card tracking mechanism OFF during the
transaction with solve this problem.

SLOT CONTROL command APDU

CLA |INS P1 P2 Lc Data In Le
See See
WFE B elow | below | - -

SLOT CONTROL command parameters

P1 P2 Action
n00 »00 Resume the card tracking mechanism
n01 »00 Suspend the card tracking mechanism

n10 »00 Stop the RF field

n10 n01 Start the RF field

n10 n02 Reset the RF field (10ms pause)

20 00 T=CL de-activation (DESELECT")

n20 n01 T=CL activation of ISO 14443-A card (RATS)

h20 h02 T=CL activation of ISO 14443-B card (Attrib)

120 104 Disable the next T=CL activation™*

n20 n05 Disable every T=CL activation (until reset of the K663)

n20 n06 Enable T=CL activation again

n20 n07 Disable the next T=CL activation and force a RF reset

nFC XX Felica runtime parameters, see § 4.3.6 below

nDE nAD Stop the slot

NOTE: a stopped slot is not available to SCardConnect any more. It
may be restarted only through an SCardControl command.

% Or DISC for Innovatron cards. This makes it possible to operate 1SO 14443-4 compliant cards at I1SO 14443-3 level. No CARD
INSERTED event is triggered, so the ATR of the card stays unchanged.

1 Upon DISCONNECT, the CARD REMOVED event fires, then the CARD INSERTED event. A new ATR is computed, and reflects that
the card runs at ISO 14443-3 level.

®
®

springcarc —

page 45 of 106

SeringCARD CCID over SeriaL - Developer's Guide

SLOT CONTROL response
Data Out SW1 |sw2
- See below

SLOT CONTROL status word

SW1 SW2 Meaning
»90 »00 Success
4.3.6.

SET FELICA RUNTIME PARAMETERS instruction

Working with Felica (Lite) cards or NFC Type 3 Tags involves 4 parameters:

The SYSTEM CODE is sent by the K663 during the JIS:X6319-4 polling loop (SENSF_REQ) to
specify which family of cards may answer. The value FFFF allows any card to answer,

The REQUEST CODE is sent by the K663 during the JIS:X6319-4 polling loop (SENSF_REQ) to
get technical data from the cards, and not only their IDm/PPm. The value ,00 prevent the
card from sending technical data,

A first SERVICE CODE is a mandatory parameter used during read operations (READ BINARY
instruction) to tell the card which “service” is accessed. The value ,000B has been assigned
by the NFC Forum to give (read) access to a type 3 Tag's NDEF record,

Another SERVICE CODE is a mandatory parameter used during write operations (UPDATE
BINARY instruction) to tell the card which “service” is accessed. The value ,0009 has been
assigned by the NFC Forum to give write access to a type 3 Tag's NDEF record.

The values emphasized in the above paragraph are the K663's default values. They could be
updated permanently thanks to the WRITE REGISTER command (§ 7.2.4) applied to the
configuration registers ,B4 (§ 8.5.2) and ,CF (§ 8.6.1).

Alternatively, those values may be changed dynamically using a simple APDU command in the
SCardTransmit stream, as depicted in the paragraphs below.

a.

SERVICE CODE for the READ BINARY instruction

SET FELICA SERVICE READ command APDU

CLA

INS P1 P2 Lc Data In Le

JFF

nFB nFC n01 h02 Service Code to be used by the -

READ BINARY instruction
(2 bytes, MSB first)

PMD15305-AA
page 46 of 106

SeringCARD CCID over SeriaL - Developer's Guide

b. SERVICE CODE for the UPDATE BINARY instruction

SET FELICA SERVICE WRITE command APDU

CLA INS P1 P2 Lc Data In Le
nFF wFB nFC n02 n02 Service Code to be used by the -
UPDATE BINARY instruction
(2 bytes, MSB first)
C. SERVICE CODE for both READ BINARY and UPDATE BINARY instructions
SET FELICA SERVICES command APDU
CLA INS P1 P2 Lc Data In Le
nFF nFB nFC n03 n02 | Service Code to be used both by the -
READ BINARY and UPDATE BINARY
instructions
(2 bytes, MSB first)
d. SYSTEM CODE and REQUEST code for Felica polling
SET FELICA SYSTEM CODE command APDU
CLA INS P1 P2 Lc Data In Le
nFF nFB nFC w10 n02 System Code to be used during -
JIS:X6319-4 polling (SC in SENS_REQ)
(2 bytes, MSB first)
SET FELICA REQUEST CODE command APDU
CLA INS P1 P2 Lc Data In Le

nFF nFB nFC nll h01

Request Code to be used during

JIS:X6319-4 polling (RC in SENS_REQ)
(1 byte)

®
®

sprinQcard —

page 47 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.3.7.

ENCAPSULATE instruction for the Contactless slot

The ENCAPSULATE instruction has been designed to help the applications communicate with
PICC/VICC that don’t comply with ISO 7816-4.

ENCAPSULATE command APDU for the contactless slot

CLA INS P1 P2 Lc Data In Le
FE | FE bsee See XX Frame to send to the PICC/VICC XX
elow below

ENCAPSULATE command parameter P1 for the contactless slot

P1

Standard communication protocols

n00

For ISO 14443-4 (A or B) PICCs : send the frame in the T=CL stream*.
Data In shall not include PCB, CID, NAD nor CRC fields

For 1SO 18092 targets : send the frame DEP_REQ/DEP_RES stream. Data In shall not
include PFB, DID, NAD nor CRC fields

h01

Send the frame “as is” using the ISO 14443-3 A protocol @ 106 kbit/s.
The standard parity bits are added (and checked in return) by the K663.
The standard CRC is added (and checked in return) by the K663.

02

Send the frame “as is” using the ISO 14443-3 B protocol @ 106 kbit/s.

The standard CRC is added (and checked in return) by the K663.

n03

Send the frame “as is” using the JIS:X6319-4 protocol @ 212 kbit/s.

The standard CRC is added (and checked in return) by the K663.

n04

Send the frame “as is” using the ISO 15693 protocol.

The standard CRC is added (and checked in return) by the K663.

h05

Send the frame “as is” using the ISO 15693 protocol.
The UID of the VICC is added to the frame (unselected access mode).
The standard CRC is added (and checked in return) by the K663.

n07

Send the frame “as is” using the JIS:X6319-4 protocol @ 424 kbit/s.

The standard CRC is added (and checked in return) by the K663.

wd .

12 This is the only way to send commands to a T=CL PICC that doesn't comply with the ISO 7816-4 APDU formatting, for instance a

Desfire 0.4.

®
®

springcarc

PMD15305-AA
page 48 of 106

SeringCARD CCID over SeriaL - Developer's Guide

P1 |Non-standard communication
Send the frame “as is” using the ISO 14443-3 A modulation @ 106 kbit/s.
09 The standard parity bits are added (and checked in return) by the K663, but the CRC is
" not added (and not checked) by the K663
- the application must append the CRC to Data In and check it in Data Out.
Send the frame “as is” using the ISO 14443-3 B modulation @ 106 kbit/s.
hOA | The CRCis not added (and not checked) by the K663
-> the application must append the CRC to Data In and check it in Data Out.
Send the frame “as is” using the ISO 15693 modulation.
hOC | The CRC is not added (and not checked) by the K663
-> the application must append the CRC to Data In and check it in Data Out.
P1 | Mifare low level communication™
Send the frame “as is” using the ISO 14443-3 A modulation.
The CRC is not added (and not checked) by the K663
OF - the application must append the CRC to Data In and check it in Data Out.
" The parity bits are not added (and not checked) by the K663
—> the application must provide a valid stream, including the parity bits).
The last byte is complete (8 bits will be sent)
n1F | Same as ,0F, but only 1 bit of the last byte will be sent
n2F | Same as ,0F, but only 2 bits of the last byte will be sent
n3F | Same as ,0F, but only 3 bits of the last byte will be sent
Wd4F | Same as ,0F, but only 4 bits of the last byte will be sent
n5F | Same as ,0F, but only 5 bits of the last byte will be sent
n6F | Same as ,0F, but only 6 bits of the last byte will be sent
n/F | Same as ,0F, but only 7 bits of the last byte will be sent

B3 The above values allow an application to transmit “ciphered” Mifare frames (the CRYPTO1 stream cipher makes a non-standard
use of the parity bits and CRC). The number of valid bits in the last byte of card’s answer will be reported in SW2.

®
®

springcarc —

page 49 of 106

SeringCARD CCID over SeriaL - Developer's Guide

P1 |Redirection to another slot**

»80 | Redirection to the main contact slot (if present)
x81 |Redirection to the 1* SIM/SAM slot (if present)
82 | Redirection to the 2™ SIM/SAM slot (if present)
183 | Redirection to the 3™ SIM/SAM slot (if present)
+84 | Redirection to the 4™ SIM/SAM slot (if present)

ENCAPSULATE command parameter P2 for the contactless slot

P2 encodes the frame time-out.

P2 | Timeout value

0 If P1 =00, use the default time-out defined by the PICC or the target (T=CL: card's FWT)
" If P1 #,00, this value shall not be used

-1 | Timeout = 106 ETU ~ 1ms

-2 | Timeout =212 ETU ~ 2ms

-3 | Timeout =424 ETU = 4ms

-4 | Timeout = 848 ETU ~ 8ms

-5 | Timeout = 1696 ETU = 16ms

-6 | Timeout = 3392 ETU ~ 32ms

-/ | Timeout = 6784 ETU = 65ms

-8 | Timeout = 13568 ETU ~ 0,125s

-9 | Timeout = 27136 ETU = 0,250s

n-A | Timeout = 54272 ETU ~ 0,500s

n-B | Timeout = 108544 ETU ~ 1s

n-C | Timeout = 217088 ETU =~ 2s

n-D | Timeout = 434176 ETU ~ 4s

h0- | Set status word = ,6F XX, XX being the contactless specific error
n8- | Set status word =63 00 on any contactless specific error

* Those values allow an application to transmit APDUs to a SAM or an auxiliary card through the PC/SC handle of the main card.

sprinQcarc —

page 50 of 106

SeringCARD CCID over SeriaL - Developer's Guide

ENCAPSULATE response for the contactless slot

Data Out

SW1 |[sw2

Frame received from the

PICC/VICC See below

ENCAPSULATE status word for the contactless slot

SW1 SW2 | Meaning

n90 h00 | Success — last byte of Data Out has 8 valid bits

n90 h01 | Success — last byte of Data Out has 1 valid bits

n90 h02 | Success — last byte of Data Out has 2 valid bits

n90 h03 | Success — last byte of Data Out has 3 valid bits

n90 h04 | Success — last byte of Data Out has 4 valid bits

n90 h05 | Success — last byte of Data Out has 5 valid bits

n90 h06 | Success — last byte of Data Out has 6 valid bits

n90 h07 | Success — last byte of Data Out has 7 valid bits

h6F XX | Error reported by the contactless interface (only allowed if high-order bit of P2
is 0). See chapter 9 for the list of possible values and their meaning.

h63 100 | Error reported by the contactless interface (when high-order bit of P2 is 1).

n62 »82 | Le is greater than actual response from PICC/VICC

n6C XX Le is shorter than actual response from PICC/VICC

springcard —

page 51 of 106

SeringCarD CCID over SeriaL - Developer's Guide

4.4. OTHer SPRINGCARD-SPECIFIC INSTRUCTIONS

4.4.1. READER CONTROL instruction

The READER CONTROL instruction allows driving the global behaviour of the K663 (LEDs, buzzer,
etc. depending on product physical characteristics).

For advanced operation, or if you want to interact with the K663 even when there's no card
inserted, use SCardControl instead (see chapter 7).

If your coupler is multi-slot (contactless + contact or SAM), the READER CONTROL instruction is
sent to one slot (a logical coupler), but is likely to have a global impact to the whole physical
coupler.

In other words, sending a READER CONTROL instruction to one card channel may have an impact
on another card channel.

It is highly recommended to use a synchronisation object in your application(s) (mutex, critical
section, ...) to prevent any concurrent access to the same physical coupler when the READER
CONTROL instruction is called.

READER CONTROL command APDU

CLA INS P1 P2 Lc Data In Le
See See
nFF wFO 100 100 below See below below

a. Driving coupler’s LEDs

For a coupler with only red and green LEDs, send the APDU:

FF FO 00 00 03 1E <red> <green>
For a coupler with red, green and yellow / blue LEDs, send the APDU:

FF FO 00 00 04 1E <red> <green> <yellow/blue>
Choose values for red, green and yellow/blue in this table:

h00 | LED is switched OFF

n01 |LED is switched ON

h02 | LED blinks slowly

103 | LED is driven automatically by the K663’s firmware (default behaviour)
n04 | LED blinks quickly

h05 | LED performs the “heart-beat” sequence

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard —

page 52 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

To go back to default (LEDs driven by the K663's firmware automatically), send the APDU:
FF FO 00 00 01 1E

b. Driving coupler’s buzzer

Some hardware feature a single tone beeper. To start the buzzer, send the APDU:

FF FO 00 00 03 1C <duration MSB> <duration LSB>
where duration specifies the length of the tone, in milliseconds (max is 60000ms).

Set duration to 0000 if you need to stop the buzzer before the duration started in a previous call.

To go back to default (buzzer driven by the K663's firmware automatically), send the APDU:
FF FO 00 00 01 1c

C. Others
The data block in the READER CONTROL instruction is forwarded “as is” to the reader control
interpreter, as documented in chapter 7.

Therefore, every command documented in § 7.2 and starting with code 1,58 may be transmitted in
the SCardTransmit link using the READER CONTROL instruction, exactly as if it were transmitted in
a SCardControl link.

Do not use this feature unless you know exactly what you are doing.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

B®

sprinQcarc —

page 53 of 106

SeringCARD CCID over SeriaL - Developer's Guide

4.4.2. TEST instruction

The TEST instruction has been designed to test the driver and/or the applications, with arbitrary
length of data (in and out).

TEST command APDU
CLA INS P1 P2 Lc Data In Le
See See
wFF wFD below | below XX XX ... XX XX

TEST command parameters

Parameter P1 specifies the length of Data Out the application wants to receive from the K663:
n00: empty Data Out, only SW returned

nFF: 255 bytes of data + SW

All values between ,00 and ,FF are allowed

6 low-order bits of P2 specify the delay between command and response.
100: no delay, response comes immediately
h3F: 63 seconds between command and response

All values between 0 and 63 are allowed

2 high-order bits of P2 are RFU and must be set to 0.

TEST response
Data Out Sw1 | sw2
XX ... XX See below

Content of Data Out is not specified, and may contain either “random” or fixed data, depending
on the K663 version and current status.

Springcc

PMD15305-AA
page 54 of 106

SeringCARD CCID over SeriaL - Developer's Guide

TEST status word

When 2 high-order bits of P2 are 0, the embedded APDU interpreter analyses the format of the
APDU, and return appropriate status word. On the other hand, if at least one of those bits is 1,
status word is fixed whatever the APDU format.

SW1 SW2 | Meaning

n90 h00 |Success, APDU correctly formatted

h67 h00 |APDU is badly formatted (total length incoherent with Lc value)
h6A n82 | Le is greater than data length specified in P1

h6C P1 |Leisshorter than data length specified in P1

PMD15305-AA
page 55 of 106

Springcc

SeringCARD CCID over SeriaL - Developer's Guide

5. WORKING WITH CONTACTLESS CARDS — USEFUL HINTS

5.1. RecoGnizing AnD IDENTIFYING PICC/VICC in PC/SC ENVIRONMENT
5.1.1. ATR of an I1SO 14443-4 compliant smartcard

If the PICC is with 14443 up to level 4 (“T=CL”), the K663 builds a pseudo-ATR using the standard
format defined in PC/SC specification:

a. For ISO 14443-A:

Offset |Name |Value |Meaning (according to 7816-3)
0 TS n3B Direct convention
1 0 3 Higher nibble 8 means: no TA1, no TB1, no TC1. TD1 to follow
hoe Lower nibble is the number of historical bytes (0 to 15)
Higher nibble 8 means: no TA2, no TB2, no TC2. TD2 to follow
2 TD1 h80 .
Lower nibble 0 means: protocol T=0
Higher nibble 8 means: no TA3, no TB3, no TC3, no TD3
3 TD2 h01 .
Lower nibble 1 means: protocol T=1
4 H1
Historical bytes from ATS response
3+k Hk
4+k TCK XX Checksum (XOR of bytes 1 to 3+k)

b. ForISO 14443-B:

Offset |Name |Value |Meaning (according to 7816-3)

0 TS n3B Direct convention

Higher nibble 8 means: no TA1, no TB1, no TC1. TD1 to follow

1 T0 88
" Lower nibble is the number of historical bytes (8)

Higher nibble 8 means: no TA2, no TB2, no TC2. TD2 to follow

2 b1 80 Lower nibble 0 means: protocol T=0

Higher nibble 8 means: no TA3, no TB3, no TC3, no TD3

3 b2 W01 Lower nibble 1 means: protocol T=1
4 H1

5 H2 "

6 3 Application data from ATQB

7 H4

PMD15305-AA
page 56 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

8 H5

9 H6 Protocol info byte from ATQB

10 H7

11 H8 XX MBLI from ATTRIB command

12 TCK XX Checksum (XOR of bytes 1 to 11)

¢. ForInnovatron (legacy Calypso cards)*:

Offset |Name |Value |Meaning (according to 7816-3)

0 TS n3B Direct convention

1 0 8. Higher nibble 8 means: no TA1, no TB1, no TC1. TD1 to follow
Lower nibble is the number of historical bytes (0 to 15)
Higher nibble 8 means: no TA2, no TB2, no TC2. TD2 to follow

2 TD1 n80 .
Lower nibble 0 means: protocol T=0
Higher nibble 8 means: no TA3, no TB3, no TC3, no TD3

3 TD2 h01 .
Lower nibble 1 means: protocol T=1

4 Hi Historical bytes from REPGEN. This is the last part of the card’s T=0

3+k Hk ATR, including its serial number®®.

4+k TCK XX Checksum (XOR of bytes 1 to 3+k)

Most Calypso cards are able to communicate both according to I1SO 14443-B or to Innovatron
protocol. The choice between the two protocols is unpredictable.

The same card will have two different ATR (one is ISO 14443-B is selected, the other if Innovatron
protocol is selected). The host application must get and check the card’s serial number?” to make
sure it will not start a new transaction on the same card as earlier.

> When bit 7 of register ,B3 is 0. Otherwise, the “real” card ATR (found in REPGEN) is returned. This ATR reports that the card
supports T=0 only, but the card behaves as it were T=1. This behaviour is not compliant with Microsoft’s CCID driver.

16 As a consequence, all the cards have a different ATR.

7 provided in the historical bytes of the ATR when the Innovatron protocol is selected, or available through the Calypso “Select

Application” command.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD log
All other brand names, product names, or trademarks b

re registered trademarks of SPRINGCARDSPRINGCARD SAS
ng to their respective holders.

Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15305-AA
page 57 of 106

springcard

SeringCARD CCID over SeriaL - Developer's Guide

5.1.2. ATR of a wired-logic PICC/VICC

For contactless memory cards and RFID tags (Mifare, CTS, etc.), the K663 builds a pseudo-ATR
using the normalized format described in PC/SC specification:

Offset | Name [Value

0 TS n3B Direct convention

1 TO WSF Higher nibble 8 means: no TA1, no TB1, no TC1. TD1 to follow
Lower nibble is the number of historical bytes (15)

2 TD1 n80 Higher nibble 8 means: no TA2, no TB2, no TC2. TD2 to follow
Lower nibble 0 means: protocol T=0

3 TD2 n01 Higher nibble 8 means: no TA3, no TB3, no TC3, no TD3
Lower nibble 1 means: protocol T=1

4 H1 n80

5 H2 n4F Application identifier presence indicator

6 H3 h0C Length to follow (12 bytes)

7 H4 hAO

g :2 :88 Registered Appl'ication Provider Identifier

10 07 03 A0 00 00 03 06 is for PC/SC workgroup

11 H8 n06

12 H9 PIX.SS |Protocol (see 5.1.4)

1‘31 :1(1) PIX.NN | Card name (see 5.1.5)

15 H12 00

16 H13 00

17 H14 00 RFU

18 H15 00

19 TCK XX Checksum (XOR of bytes 1 to 18)

B®

sprinQcarc —

page 58 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.1.3. Using the GET DATA instruction

With the GET DATA instruction (documented in § 4.2.1), the host application is able to retrieve
every information needed to identify a PICC:

Serial number (UID or PUPI),
Protocol related values (ATQA and SAKA or ATQB, ...).

5.1.4. Contactless protocol

The standard byte (PIX.SS in PC/SC specification) is constructed as follow:

b7 b6 |b5 b4 |b3 [b2 |bl |bO Value |Description
0O |0 |0 |0 |0 |0 |0 |O n00 No information given
0O |0 |0 |0 (0 |0 |0 |1 n01 ISO 14443 A, level 1
0O |0 |0 |O |0 |0 |1 |O n02 ISO 14443 A, level 2
ISO 14443 A, level 3 or 4 (and Mifare)
010 10 10 10 10 11 11 03 1150 18092 @ 106 kbit/s “NFC-A”
0O |0 |0 |0 (0O |1 |0 |1 n05 ISO 14443 B, level 1
0O |0 |0 |0 |O |1 |1 O n06 ISO 14443 B, level 2
0O |0 |0 |O |O |1 |1 |1 K07 ISO 14443 B, level 3 or 4
0O |0 |0 |O |1 |0 |0 |1 »09 ICODE 1, EM4134
0O |0 |[O |O |1 |0 |1 |1 »OB ISO 15693
JIS:X6319-4
0O |0 |0 |1 (0 |0 |0 |1 nll Felica cards
ISO 18092 @ 212 or 424 kbit/s “NFC-F”

Note: PIX.SS is defined for both memory and micro-processor based cards, but available in the
ATR for memory cards only. In the other case, use the GET DATA instruction (with parameters
P1,P2=,F1,00) to get the underlying protocol used by the smartcard.

springcard

PMD15305-AA
page 59 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.1.5.

Contactless card name bytes

The name bytes (PIX.NN in PC/SC specification) are specified as follow:

NN | Card name From FW
Values specified by PC/SC
»00 ,01 NXP Mifare Classic 1k
100 ,02 NXP Mifare Classic 4k
n00 103 NXP Mifare UltralLight
NFC Forum Type 2 Tag with a capacity <= 64 bytes
»00 1,06 ST Micro Electronics SR176
00 ,07 ST Micro Electronics SRI4K, SRIX4K, SRIX512, SRI512, SRT512 1.70
»00 OA Atmel AT88SCO808CRF
»00 OB Atmel AT88SC1616CRF
n00 0C Atmel AT88SC3216CRF
»00 0D Atmel AT88SC6416CRF
n00 112 Texas Instruments TAG IT
100,13 ST Micro Electronics LRI512
n00 114 NXP ICODE SLI
h00 116 Not available in this product (NXP ICODE1)
r00 121 ST Micro Electronics LRI64
n00 24 ST Micro Electronics LR12
n00 1,25 ST Micro Electronics LRI128
100 1,26 NXP Mifare Mini
w00 2F Innovision/Broadcom Jewel
100 130 Innovision/Broadcom Topaz
NFC Forum Type 1 Tag
n00 134 Atmel AT88RF04C
»00 135 NXP ICODE SL2
»00 1,36 NXP Mifare Plus 2K SL1 1.81
n00 137 NXP Mifare Plus 4K SL1 1.81
x00 1,38 NXP Mifare Plus 2K SL2 1.81
»00 ,39 NXP Mifare Plus 4K SL2 1.81
n00 n3A NXP Mifare UltraLight C, NXP NTAG203
NFC Forum Type 2 Tag with a capacity > 64 bytes
n00 n3A Felica
NFC Forum Type 3 Tag

®
®

springcarc

PMD15305-AA
page 60 of 106

SeringCARD CCID over SeriaL - Developer's Guide

NN | card name
SpringCard proprietary extension®®
nFF LAO Generic/unknown 14443-A card
nFF hA1 Kovio RF bar-code
wFF ,BO Generic/unknown 14443-B card
nFF nB1 Not available in this product (ASK CTS 2568B)
nFF B2 Not available in this product (ASK CTS 512B)
nFF B3 Pre-standard ST Micro Electronics SRI 4K
wFF B4 Pre-standard ST Micro Electronics SRI X512
wFF ,B5 Pre-standard ST Micro Electronics SRI 512
wFF ,B6 Pre-standard ST Micro Electronics SRT 512
wFF \B7 Inside Contactless PICOTAG/PICOPASS
wFF B8 Generic Atmel AT88SC / AT88RF card
nFF »CO Calypso card using the Innovatron protocol
nFF nDO Generic ISO 15693 from unknown manufacturer
WFF D1 Generic I1SO 15693 from EM Marin (or Legic)
nFF 1D2 Generic ISO 15693 from ST Micro Electronics, block number on 8 bits
wFF .D3 Generic ISO 15693 from ST Micro Electronics, block number on 16 bits
wFF ,D5 Generic ISO 15693 from Infineon
wFF ,D6 EM MicroElectronic Marin EM4134 chip 1.81
nFF LFF Virtual card (test only)

Note: PIX.NN is specified for memory cards only. Even if the GET DATA instruction allows to
retrieve PIX.NN even for micro-processor based cards (smartcards), the returned value is
unspecified and shall not be used to identify the card.

8 The cards in this list are not referenced by PC/SC specification at the date of writing. In case they are added to the specification,

the future firmware versions will have to use the new value. It is therefore advised not to check those values in the applications, as
they are likely to be removed in the future. Set bit 6 of configuration register ,B3 (§ 8.4.3) to force PIX.NN =00 ,00 instead of using
those proprietary values.

springcard —

page 61 of 106

SeringCarD CCID over SeriaL - Developer's Guide

5.2. 1SO 14443-4 PICCs
5.2.1. Desfire first version (0.4)

Since this PICC is not ISO 7816-4 compliant, the Desfire commands must be wrapped in an
ENCAPSULATED instruction, with P1=,00 (§ 4.3.7). The K663 translates the C-APDU into a native
Desfire command, retrieve the native Desfire answer, and translates it into a valid R-APDU.

5.2.2. Desfire EVO (0.6) and EV1

This PICC is ISO 7816-4 compliant. Native commands are wrapped into ISO 7816-4 APDUs with a
card-specific CLA = 90. Please refer to the card's datasheet for details.

5.2.3. Calypso cards

A Calypso card is ISO 7816-4 compliant. You may work with a contactless Calypso card as if it were
inserted in a contact smartcard coupler.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

sprinQcarc —

page 62 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.3. Wirep-Loaic PICCs sasep on I1ISO 14443-A

5.3.1. Mifare Classic

The PICCs covered by this chapter are:
Mifare 1k (NXP MF1ICS50, PIX.NN = ,0001),
Mifare 4k (NXP MF1I1CS70, PIX.NN = ,0002),
Mifare Mini (NXP MF1ICS20, PIX.NN =,0026),
Mifare Plus (X or S) when used in level 1 (see § 5.3.2).

Please download the datasheets of the cards at www.nxp.com. Useful information are available at
www.mifare.net.

All these PICCs are divided into 16-byte blocks. The blocks are grouped in sectors. At the end of
every sector a specific block (“sector trailer”) is reserved for security parameters (access keys and
access conditions).

Operating multi-standard PICCs as Mifare Classic

Some ISO 14443-4 compliant smartcards or NFC objects are also able to emulate Mifare Classic
cards, but due to the ISO 14443-4 (T=CL) compliance, the K663 will “hide” their Mifare emulation
mode and make them appear as high-level smartcards.

There are 3 ways to force the K663 to stay at Mifare level:

Send the T=CL DESELECT command to the PICC (SLOT CONTROL instruction with
P1,P2=,20,00),

Reset the RF field and temporarily disable T=CL activation (SLOT CONTROL instruction with
P1,P2=,10,03),

Permanently disable T=CL activation through configuration register ,B3.
a. READ BINARY instruction

In the READ BINARY command APDU,
P1 must be 00,

P2 is the address of the first block to be read (0 to 63 for a Mifare 1k, 0 to 255 for a Mifare
4k),

Since the size of every block is 16, Le must be a multiple of 16,

When Le=,00 and the address is aligned on a sector boundary, all the data blocks of the
sector are returned (48 or 240 bytes),

springcard —

page 63 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

= When Le=,00 and the address is not aligned, a single block is returned (16 bytes).

Note that when a sector trailer (security block) is read, the keys are not readable (they are masked
by the PICC).

The READ BINARY instruction can’t cross sector boundaries; the GENERAL AUTHENTICATE
instruction must be called for each sector immediately before READ BINARY.

Using the MIFARE CLASSIC READ instruction (§ 3.3.5) is easier and may shorten the transaction
time.

b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,
m P1 must be 00,

m P2 is the address of the first block to be written (1 to 63 for a Mifare 1k, 1 to 255 for a
Mifare 4k),

Since the size of every block is 16, Lc must be a multiple of 16 (48 bytes for standard sectors, 240
bytes for the largest sectors in Mifare 4k).

The UPDATE BINARY instruction can’t cross sector boundaries ; the GENERAL AUTHENTICATE
instruction must be called for each sector immediately before UPDATE BINARY.

Important disclaimer

Writing sector trailers (security blocks) is possible as long as the sector's current access condition
allows it, but Mifare sector trailers have to follow a specific formatting rule (mix-up of the access
conditions bits) to be valid. Otherwise, the sector becomes permanently unusable.

Before invoking MIFARE CLASSIC WRITE, always double check that you're not writing a sector
trailer. If you really have to do so, make sure the new content is formatted as specified in the
datasheet of the PICC.

Using the MIFARE CLASSIC WRITE instruction (§ 4.3.2) is easier and may shorten the transaction
time.

C. Specific instructions for Mifare Classic

3 specific instructions exist to work with Mifare Classic PICCs:
m MIFARE CLASSIC READ, see § 4.3.1,
m MIFARE CLASSIC WRITE, see § 4.3.2,

m MIFARE CLASSIC VALUE (implementing INCREMENT, DECREMENT and RESTORE followed
by TRANSFER), see § 4.3.3.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

sprinQcarc —

page 64 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.3.2. Mifare Plus X and Mifare Plus S

Please download the datasheets of the cards at www.nxp.com.

The Mifare Plus implements 4 different security levels. The behaviour of the card changes
dramatically with the selected security level.

SpringCard has developed the PCSC_MIFPLUS software library (available as source code and as
pre-compiled DLL in the SDK) to help working with Mifare Plus cards without going down at the
APDU level and without the need to implement the security scheme by yourself.

For the documentation of this API, go to
http://www.springcard.com/support/apidoc/pcsc_mifplus/index.html

a. Level 0

At level 0, the PICC is ISO 14443-4 (T=CL) compliant. The K663 builds a smartcard ATR according to
§ 5.1.1. The historical bytes of the ATS are included in the ATR and help recognizing the card at
this level.

As the PICC is not ISO 7816-4 compliant, the commands shall be sent wrapped in an
ENCAPSULATED instruction with P1=,00 (§ 4.3.7).

At the end of the personalisation process, the RF field must be reset (so the PICC will restart at
Level 1 or more). Send the SLOT CONTROL instruction with P1,P2=,10,02 to do so (§ 4.3.5)".
b. Level 1

At level 1, the PICC emulates a Mifare Classic (§ 5.3.1). The K663 builds a memory card ATR
according to § 5.1.1.

The application shall use the MIFARE CLASSIC READ and MIFARE CLASSIC WRITE instructions to
work with the card at this level.

The PICC supports a new AES authentication Function. Use the ENCAPSULATE instruction with
P1=,01 (§ 4.3.7) to implement this function.

In order to increase the security level of the card (going to level 2 or level 3), an ISO 14443-4
(T=CL) session must be manually started, even if the PICC announces that is is not T=CL compliant.
Send the SLOT CONTROL instruction with P1,P2=,20,01 to do so (§ 4.3.5). Afterwards, process as
documented for level 0.

C. Level 2

The level 2 is not available on Mifare Plus S.

¥ As a consequence, the card with be reported as REMOVED, then a new CARD INSERT event will be triggered (but with a different
ATR as the security level is different).

http://www.springcard.com/support/apidoc/pcsc_mifplus/index.html

springcard —

page 65 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

Working with the Mifare Plus X at this level is possible thanks to the low level instruction calls

(SLOT CONTROL, ENCAPSULATE) but it is not implemented in the K663 (and not supported by our
software library).

d. Level 3

At level 3, the PICC is ISO 14443-4 (T=CL) compliant. The K663 builds a smartcard ATR according to

§ 5.1.1. The historical bytes of the ATS are included in the ATR and help recognizing the card at
this level.

Since the card is not ISO 7816-4 compliant, the commands shall be sent wrapped in an
ENCAPSULATED instruction, with P1=,00 (§ 4.3.7).

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

sprinQcarc —

page 66 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.3.3. NFC Forum Type 2 Tags — Mifare UltralLight and UltraLight C, NTAG203...

The cards covered by this chapter are:
Mifare UL — NXP MFO1CU1 (PIX.NN = ,0003),
Mifare UL C— NXP MFO1CU2 (PIX.NN = ,003A),
Any PICC compliant with the specification of the NFC Forum Type 2 Tag.

Please visit www.nfcforum.org to get the specification of the Type 2 Tag.

All these cards are divided into 4-byte pages. It is possible to write only 1 page at once, but
reading is generally done 4 pages by 4 pages (16 bytes). A NFC Forum Type 2 Tag could also be
optionally divided into sectors of 256 pages (1024 bytes).

It isn't possible to discover the actual capacity of a compliant PICC at protocol level.

If the PICC is already formatted according to the specification of the NFC Forum Type 2 Tag, the
capacity is stored among other data in the 1 OTP page (CC — capability container bytes).

In any other case, the application may find the number of pages by sending READ BINARY
instruction, incrementing the address, until it fails.

Pay attention that unfortunately some PICCs do not fail but truncate the address; for instance a
PICC with only 16 pages (0 to 15) may return the content of pages 0, 1, 2 and 3 when the address
16 is read. Since pages 0 and 1 store the UID (serial number) of the PICC, compare pages 16, 17 to
pages 0, 1 to see that the end of the memory space has been reached.

a. READ BINARY instruction

In the READ BINARY command APDU,
P1 is the sector number. It must be ,00 for PICCs that have only one sector,

P2 is the address of the first page to be read. Please refer to the chip's datasheet to know
how many pages could be addressed.

Since the size of a page is 4 bytes, Le must be multiple of 4. When Le=,00, 4 pages are returned (16
bytes).

It is possible to read the complete data area of a Mifare UL in a single call by setting Le to ,40 (64
bytes). For Mifare UL C, the same result is achieved by setting Le to ,90 (144 bytes).

http://www.nfcforum.org/
http://www.nxp.com/

springcard —

page 67 of 106

SeringCarD CCID over SeriaL - Developer's Guide

b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,
m Plis the sector number. It must be ,00 for PICCs that have only one sector,

m P2 is the address of the (single) page to be written. Please refer to the chip's datasheet to
know how many pages could be addressed.

Since the size of a page is 4 bytes, Lc must be 4, exactly.

Some pages may hold
- OTP (one-time-programming) bits,
- and/or lock bits that are intended to make the PICC memory read only.

Do not write on those pages without a good understanding of the consequences.
C. Mifare Ultralight C 3-DES authentication

The Mifare UltraLight C supports a 3-pass Triple-DES authentication feature.
Use the ENCAPSULATE instruction with P1=,01 (§ 4.3.7) to implement this function.

SpringCard has developed the PCSC_MIFULC software library (available as source code and as
pre-compiled DLL in the SDK) to help working with Mifare Ultralight C cards without the need to
implement the security scheme by yourself.

For the documentation of this API, go to
http://www.springcard.com/support/apidoc/pcsc_mifulc/index.html

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

http://www.springcard.com/support/apidoc/pcsc_mifulc/index.html

[| | ®
V &f = ",r/", =
S r“ . LU U PMD15305-AA
ot bl page 68 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.3.4. NFC Forum Type 1 Tags — Innovision/Broadcom chips

Firmware 2 1.75
The PICCs covered by this chapter are:
Innovision/Broadcom Topaz (PIX.NN = ,002F),
Innovision/Broadcom Jewel (PIX.NN = ,0030),
Any PICC compliant with NFC Forum Type 1 Tag specification.

Please visit www.nfcforum.org to get the Type 1 Tag specification.

a. Memory Structures

There are 2 groups of PICCs in this specification:

PICCs with a Static Memory Structure provide 120 bytes of data. They do support only the
RALL, READ, WRITE-E and WRITE-NE functions.

PICCs with a Dynamic Memory Structure provide more than 120 bytes of data. They are
divided into 8-bytes blocks. A segment is a group of 16 blocks (i.e. 128 bytes of data). New
functions are provided to address blocks and segments: READ8, RSEG, WRITE-E8 and

WRITE-NES.

Those PICCs have 2 hardware information bytes called HRO and HR1.
HRO =11 denotes a Static Memory Structure,
HRO =1y, where y # 1, denotes a Dynamic Memory Structure,
Other values for HRO are RFU, HR1 is ignored.

Prior to read/write PICC's data, the application shall fetch HRO to know whether the PICC has a
Static or a Dynamic Memory Structure. To do so, the application may either:

Invoke the READ BINARY instruction, specifying it wants to use the PICC's RALL function
and expects 122 bytes of data (). HRO is the first byte in the response.

Invoke the GET DATA instruction, specifying it wants to get the PICC's complete identifier
(). HRO is the first byte in the response.

http://www.nfcforum.org/

springcard

PMD15305-AA
page 69 of 106

SeringCARD CCID over SeriaL - Developer's Guide

b. READ BINARY instruction
I | P1 | P2 | PICCfunction | Description
Both Static and Dynamic Structures
00 0 The coupler returns the 120 bytes of data
73 120 n00 r00 | RALL returned by the PICC in response to RALL.
" The HRO and HR1 bytes are dropped.
The coupler returns the complete frame
h7A 122 n00 n00 | RALL returned by the PICC in response to RALL, i.e.
HRO and HR1 followed by 120 bytes of data.
00, 10O P2 specify the byte address within the card
h01 1 to READ from 0 to 127.
00, n7F One byte is returned.
Dynamic Memory Structure only
100, ,00 P1, P2 specify the byte address within the
100, 1,80 card. .
n80 128 01..00 RSEG A complete segment (128 bytes of data) is
s returned. Therefore, P1, P2 must be aligned to
a segment boundary (= 0 mod 128).
100, ,00 P1, P2 specify the byte address within the
00. .08 card.
n08 8 hOO' th READS A complete block (8 bytes of data) is returned.
S Therefore, P1, P2 must be aligned to a block
boundary (= 0 mod 8).

Using the RALL or RSEG functions is a lot faster than using READ/READS in a loop.

Springcc

PMD15305-AA
page 70 of 106

SeringCARD CCID over SeriaL - Developer's Guide

C. UPDATE BINARY instruction
e | P1 | P2 | PICCfunction | Description
Both Static and Dynamic Structures
00, »00 The coupler writes 1 byte of data into the Tag.
h01 1 to WRITE-E .
00, ,7F P2 specify the byte address (from 0 to 127)
The coupler updates 1 byte of data to the Tag.
80, 00 The actual operation is a XOR between the
h01 1 to WRITE-NE current content of the card and the specified
h80, n/F value.
P2 specify the byte address (from 0 to 127)
Dynamic Memory Structure only
The coupler writes 8 byte of data into the Tag.
00, 10O . .
100, ,08 P1, P2 specify the byte address within the
K01 1 00. .10 WRITE-E8 card.
e Therefore, P1, P2 must be aligned to a block
boundary (= 0 mod 8).
The coupler updates 8 bytes of data to the Tag.
The actual operation is a XOR between the
n80, 00 -
80, ,08 current content of the card and the specified
n01 1 80, .10 WRITE-NE8 value.
oS Plos, P2 specify the byte address within the
card. Therefore, P1y6, P2 must be aligned to a
block boundary (= 0 mod 8).

Some blocks holds OTP (one-time-programming) bits, and/or lock bits that are intended to make
the PICC memory read only. Do not write on those bytes without a good understanding of the
consequences.

springcard —

page 71 of 106

SeringCarD CCID over SeriaL - Developer's Guide

5.4. Wirep-Loaic PICCs sasep on ISO 14443-B
5.4.1. ST Micro Electronics SR176

These PICCs are identified by PIX.NN = ;,0006.
They are divided into 2-byte blocks.

a. READ BINARY instruction

In the READ BINARY command APDU,
= P1 must be ,00,
m P2isthe address of the first block to be read (0 to 15),

Since the size of every block is 2, Le must be multiple of 2 (up to 32 bytes),

When Le=,,00, a single block is returned (2 bytes).
b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,

® P1 must be 00,

m P2is the address of the block to be written,
Since the size of every block is 2, Lc must be 2, exactly.

Some blocks play a particular role in the configuration of the PICC. Do not write on those blocks
without a good understanding of the consequences.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard —

page 72 of 106

SeringCarD CCID over SeriaL - Developer's Guide

5.4.2. ST Micro Electronics SRI4K, SRIX4K, SRI512, SRX512, SRT512

These PICCs are identified by PIX.NN = ,0007.
They are divided into 4-byte blocks.

a. READ BINARY instruction

In the READ BINARY command APDU,
m P1 must be 00,
m P2 is the address of the first block to be read,

Since the size of every block is 2, Le must be multiple of 4,

When Le=,,00, a single block is returned (4 bytes).
b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,

m P1 must be 4,00,

m P2 isthe address of the block to be written,
Since the size of every block is 4, Lc must be 4, exactly.

Some blocks play a particular role in the configuration of the PICC. Do not write on those blocks
without a good understanding of the consequences.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15305-AA
page 73 of 106

Springcc

SeringCARD CCID over SeriaL - Developer's Guide

5.4.3. Inside Contactless PicoPass, ISO 14443-2 mode

This part applies to chips named either “PicoPass or PicoTag” when the ISO 14443-3 compliance is
NOT enabled in the card (see § 5.4.4 in the other case).

Those PICCs exist in two sizes (2K = 256 B, 16K = 2 kB), and in non-secure (2K, 16K) or secure
(2KS, 16KS) versions. They are divided into 8-byte blocks.

They are currently identified by PIX.NN = ,FFB7 and PIX.SS = ,06 (ISO 14443-B level 2). Pay
attention that this may change in future versions since PC/SC has registered new PIX.NN for these
PICCs.

The K663 may read/write the non-secure chips only (2K, 16K). The behaviour with the secure chips
is undefined.

a. READ BINARY instruction

In the READ BINARY command APDU,
P1 must be 00,
P2 is the address of the first block to be read (2K: 0 to 31; 16K: 0 to 255),

Since the size of every block is 8, Le must be multiple of §,

When Le=,,00, a single block is returned (8 bytes).
b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,
P1 must be ,,00,
P2 is the address of the block to be written (2K: 0 to 31; 16K: 0 to 255),
Since the size of every block is 8, Lc must be 8, exactly.
I Some blocks play a particular role in the configuration of the PICC. Do not write on those blocks
without a good understanding of the consequences.

c. Page select

The Inside specific Page select function is not implemented in the K663. Use the ENCAPSULATE
instruction to send it directly to the PICC.

Ar J}@
/7‘ Y e
Spr" . xuy 1 PMD15305-AA

page 74 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.4.4. Inside Contactless PicoPass, ISO 14443-3 mode

This part applies to chips named either “PicoPass or PicoTag” when the ISO 14443-3 compliance IS
enabled in the card (see § 5.4.3 in the other case).

Those PICCs exist in two sizes (2K = 256 B, 16K = 2 kB), and in non-secure (2K, 16K) or secure
(2KS, 16KS) versions. They are divided into 8-byte blocks.

They are currently identified by PIX.NN = ,FFB7 and PIX.SS = ,07 (ISO 14443-B level 3 or 4). Pay
attention that this may change in future versions since PC/SC has registered new PIX.NN for these
PICCs.

The K663 may read/write the non-secure chips only (2K, 16K). The behaviour with the secure chips
is undefined.

a. READ BINARY instruction

In the READ BINARY command APDU,
P1 must be 00,
P2 is the address of the first block to be read (2K: 0 to 31; 16K: 0 to 255),

Since the size of every block is 8, Le must be multiple of §,

When Le=,,00, a single block is returned (8 bytes).
b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,

P1 must be ,,00,

P2 is the address of the block to be written (2K: 0 to 31; 16K: 0 to 255),
Since the size of every block is 8, Lc must be 8, exactly.

Some blocks play a particular role in the configuration of the PICC. Do not write on those blocks
without a good understanding of the consequences.

B®

sprinQcarc —

page 75 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.4.5. Atmel CryptoRF

The PICCs covered by this chapter are:
AT88SCO808CRF (PIX.NN = ,000A),
AT88SC1616CRF (PIX.NN = ,000B),
AT88SC3216CRF (PIX.NN =,000C),
AT88SC6416CRF (PIX.NN = ,000D),
AT88SCRFO4C (PIX.NN =,0034).

The K663 implements the read and write functions in non-authenticated mode. Advanced
functions and authenticated communication has to be implemented by the application within an
ENCAPSULATE instruction.

The coupler always activates this PICC with CID=,01. Use this CID to build the actual command to
be sent through the ENCAPSULATE instruction.
a. READ BINARY instruction

In the READ BINARY command APDU,

P1,P2 is the first address to be read,

Le is the length to be read (1 to 32 bytes).

Note: the READ BINARY instruction maps to the “Read User Zone” low-level command. The “Read
System Zone” command is not implemented in the K663, and therefore must be encapsulated.

b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,
P1,P2 is the first address to be written,
Lcis the length to be written (1 to 32 bytes).

Note: the UPDATE BINARY instruction maps to the “Write User Zone” low-level command. The
“Write System Zone” command is not implemented in the K663, and therefore must be
encapsulated.

ge

S r In ‘ /f(% PMD15305-AA
;\/{ =

(\”j ~ page 76 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.5. 1S0O 15693 VICCs
5.5.1. ISO 15693-3 read/write commands

The size of the blocks depend on the chip. Known sizes are
1 byte for ST Micro Electronics LRI64 (PIX.NN =,0021),

4 bytes for NXP ICODE-SLI (PIX.NN = ,0014) and Texas Instrument TagIT chips (PIX.NN =
10012) and other ST Micro Electronics chips,

8 bytes for EM Marin chips (PIX.NN = ,FFD1).

Please read the documentation of the VICC you’re working with to know the actual size of its
blocks, and the number of existing blocks.

Some VICCs feature special blocks called either OTP (one-time-programming), WORM (write one,
read many) that can't be overwritten nor erased after a first write operation. Do not write on
those blocks without a good understanding of the consequences.

a. READ BINARY instruction

In the READ BINARY command APDU,
P1 must be 00,

P2 is the address of the first block to be read; please read documentation of your VICC to
know its number of blocks,

Le must be a multiple of the size of the blocks,
When Le=,,00, a single block is returned (length depending on the VICC).
Note: ISO 15693 defines 2 functions to read date: READ SINGLE BLOCK and READ MULTIPLE
BLOCKS. The coupler's READ BINARY instruction tries both of them until one succeed.
b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,
P1 must be 00,

P2 is the address of the block to be written, please read documentation of your VICC to
know its number of blocks,

Lc must be the size of the block, exactly.

Note: I1SO 15693 defines 2 functions to read date: WRITE SINGLE BLOCK and WRITE MULTIPLE
BLOCKS. The coupler's UPDATE BINARY instruction tries both of them until one succeed.

B®

sprinQcarc —

page 77 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.5.2. Read/write commands for ST Micro Electronics chips with a 2-B block address

ST Micro Electronics' M24LR16E (PIX.NN = ,FFD3) implements an extended version of ISO 15693's
commands, where the address are on 2 bytes instead of one.

Proceed as with other ISO 15693 chips with this difference: in READ BINARY and UPDATE BINARY
instructions, P1 is the high-order byte of the address and could be non-zero.

5.5.3. Complete ISO 15693 command set

The ISO 15693 standard defines numerous commands with or without an 'option' flag, and leaves
the chip manufacturers free to implement virtually any custom or proprietary commands.

Starting with firmware version 1.81, the basic commands, in their basic implementation, are
available through the RFID MEMORY CONTROL instruction (§ 4.3.4), but it remain impossible to
implement all commands and all variations in a reader.

The ENCAPSULATE instruction (INS = ,FE, see § 4.3.7) for ISO 15693 has therefore been
introduced; this instruction allows to send any arbitrary command to a 15693 chip.

Since the K663 operates the ISO 15693 chip in addressed mode (the VICC is never put into quiet
state), the chip's UID shall be provided within every command frame. The insertion of the UID is
performed automatically by the ENCAPSULATE instruction when parameter P1 is set to ,05.

The APDU shall be build as follow:
CLA INS P1 P2 Lc Data In Le

Command | Command Command data
nFF nFE n05 n00 XX flags code (optional) n00

Note: Le could be omitted.

springcard —

page 78 of 106

SeringCarD CCID over SeriaL - Developer's Guide

Allowed values for the 'command flags' byte

Bit Value | Description

7 RFU 0

6 Option 0/1 Meaning is defined by the command description. Please refer
to the ISO 15693:3 standard and/or to the datasheet of the
VICC for details

5 Address 1 The UID of the VICC is included in the command frame

4 Select 0 Not using the VICC quiet state

3 Protocol 0/1 Must be 0 for standard commands

extension Some VICC may implement vendor-specific commands that

require to have this bit setto 1

2 Inventory 0 It is not allowed to invoke the INVENTORY command through
an ENCAPSULATE APDU

1 Data rate 1 High data rate shall be used

0 Sub carrier 0 A single sub-carrier shall be used

As a summary, typical values for the 'command flags' byte are:
m 122 when the option flag is not set

= 162 when the option flag is required by the PICC or the command
5.5.4. Implementation of basic ISO 15693 commands

Starting with firmware version 1.81, the below commands are available through the RFID
MEMORY CONTROL instruction (§ 4.3.4)

a. Read single block

ISO 15693 command code: ,20

The APDU is
FF FE 05 00 03 22 20 <block number>

b. Werite single block

ISO 15693 command code: ;21

The APDU is

FF FE 05 00 <3 + data length > 22 21 <block number> <...data...>
The length of the data must match the size of the block. Please refer to the VICC's datasheet to

know the size of its block.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

Springcard s

SeringCarD CCID over SeriaL - Developer's Guide

C. Lock block

ISO 15693 command code: ,22

The APDU is

FF FE 05 00 03 22 22 <block number>
Locking a block makes it permanently read-only. This operation can't be cancelled. Do not
perform this operation without a good understanding of the consequence.

d. Write AFI

ISO 15693 command code: ,27

The APDU is
FF FE 05 00 03 22 27 <new AFI>

e. Lock AFI

ISO 15693 command code: ;28

The APDU is

FF FE 05 00 02 22 28
I Locking the AFI can't be cancelled. Do not perform this operation without a good understanding

of the consequence.
f. Write DSFID

ISO 15693 command code: ,29

The APDU is
FF FE 05 00 03 22 29 <new DSFID>

g. Lock DSFID

ISO 15693 command code: ,2A

The APDU is

FF FE 05 00 02 22 2A
I Locking the DSFID can't be cancelled. Do not perform this operation without a good

understanding of the consequence.
h. Get system information

ISO 15693 command code: ;2B

The APDU is
FF FE 05 00 02 22 2B

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

Springcard e

SeringCarD CCID over SeriaL - Developer's Guide

Note: the K663 always sends the Get system information command to the VICC, as part of the
discovery process. Invoke the GET DATA instruction (§ 4.2.1) to retrieve the value already returned

by the VICC to the K663.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15305-AA
page 81 of 106

SeringCARD CCID over SeriaL - Developer's Guide

5.6. OrtHer non-ISO PICCs

5.6.1. NFC Forum Type 3 Tags / Felica

The PICCs covered by this chapter are:
Felica Lite, Felica Lite-S (PIX.NN = ,003B),
Any PICC compliant with the specification of the NFC Forum Type 3 Tag.

Please visit www.nfcforum.org to get the Type 3 Tag specification.

a. READ BINARY instruction

In the READ BINARY command APDU,
P1 must be 00,
P2 is the address of the first block to read.

Since the size of a block is 16 bytes, Le must be multiple of 16 (,10). When Le=,00, a single block is
returned (16 bytes).

It is possible to read up to 8 blocks at once.

The READ BINARY instruction is translated into the Felica “CHECK” command, using the current
SERVICE CODE for READ BINARY value as the “Service Code” parameter to the command. The
default value for this parameter is ,000B. See § 4.3.6 if you need to change value.

b. UPDATE BINARY instruction (single byte)

In the UPDATE BINARY command APDU,

P1 must be 00,

P2 is the address of the (single) block to be written.
Since the size of a block is 16 bytes, Lc must be 16 (,10), exactly.

The UPDATE BINARY instruction is translated into the Felica “UPDATE” command, using the
current SERVICE CODE for UPDATE BINARY value as the “Service Code” parameter to the
command. The default value for this parameter is ,0009. See § 4.3.6 if you need to change value.

http://www.nfcforum.org/

PMD15305-AA
page 82 of 106

Springcc

SeringCARD CCID over SeriaL - Developer's Guide

5.7. OrtHer non-ISO VICCs

5.7.1. EM4134

These VICCs use the ISO 15693 bit modulation, but a vendor-specific frame format and command
set. They are recognized by PIX.NN = hFF D6. They are divided into 16 words, each word being 32-
bit (4-Byte) wide.

a. READ BINARY instruction

In the READ BINARY command APDU,
P1 must be 00,
P2 is the address of the first word to read (0 to 15).

Since the size of a word is 4 bytes, Le_must be multiple of 4 (,04). When Le=,00, a single word is
returned (4 bytes).

It is possible to read up the complete card's content (16 words) at once.
b. UPDATE BINARY instruction

In the UPDATE BINARY command APDU,
P1 must be 00,
P2 is the address of the word to be written.

Since the size of a word is 4 bytes, Lc must be 4 (,04), exactly.
C. Lock

Locking a word is implemented through the RFID MEMORY CONTROL instruction, using the Lock
Block function code (§ 4.3.4.c).

springcard —

page 83 of 106

SeringCarD CCID over SeriaL - Developer's Guide

6. Using THE H663 withH A NFCIP-1 TARGET

[TBD]

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15305-AA
page 84 of 106

Springcc

SeringCARD CCID over SeriaL - Developer's Guide

7. Direct conTrOL OF THE K663

7.1. Basis
Direct control of a PC/SC coupler is possible through the SCardControl function.

The SCARD_On_MCU library provides the scardControl function to do the same.
7.1.1. Link to SpringProx legacy protocol

Sending an escape sequence through SCardControl is exactly the same as sending a “legacy
command” to a SpringCard coupler running in legacy mode.

The detailed reference of all the command supported by our readers is available in SpringCard
CSB4, K531, K632 or K663 development kits. The paragraphs below depict only a subset of the
whole function list, but the functions listed here are the most useful in the PC/SC context.

7.1.2. Format of response, return codes

When the dialogue with the K663 has been performed successfully, SCardControl returns
_SCARD_S_SUCCESS, and at least one byte is returned in out_buffer (at position 0).

The value of this byte is the actual coupler's status code: ,00 on success, a non-zero value upon
error. The complete list of the K663’s error codes is given in chapter 9: Annex A — Specific error
codes.

When there’s some data available, the data is returned at position 1 in out_buffer.

7.1.3. Redirection to the Embedded APDU Interpreter

SCardControl buffers starting by ,FF (CLA byte of the Embedded APDU Interpreter) as processed as
if they were received in a SCardTransmit stream.

springcard e

SeriNngCARD CCID over SeriaL - Developer's Guide

7.2. LiST OF AVAILABLE CONTROL SEQUENCES
7.2.1. Action on the LEDs

a. Setting the coupler's LEDs manually

For a coupler with only red and green LEDs, send the sequence:

58 1E <red> <green>
For a coupler with red, green and yellow / blue LEDs, send the sequence:

58 1E <red> <green> <yellow/blue>
Choose values for red, green and yellow/blue in this table:

n00 LED is switched OFF

n01 LED is switched ON

n02 LED blinks slowly

n04 LED blinks quickly

h05 LED performs the “heart-beat” sequence

Once such a command has been sent to the K663, the firmware no longer manages the LEDs
automatically: the LEDs remain permanently in the last state specified by the application.

Use the above command to make the firmware drive the LEDs automatically again.
b. Going back to default (LEDs managed by the coupler's firmware)

Send the sequence

58 1E
To go back to default mode.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard —

page 86 of 106

SeringCarD CCID over SeriaL - Developer's Guide

7.2.2. Action on the buzzer

a. Starting/stopping the buzzer

Some hardware feature a single tone beeper. To start the buzzer, send the sequence:

58 1C <duration MSB> <duration LSB>
Where duration specifies the length of the tone, in milliseconds (max is 60000ms).

Set duration to O if you need to stop the buzzer before the duration started in a previous call.

Once such a command has been sent to the K663, the firmware no longer manages the buzzer
automatically.

Use the above command to make the firmware drive the buzzer automatically again.
b. Going back to default (buzzer managed by the coupler's firmware)

Send the sequence

58 1C
To go back to default mode.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

PMD15305-AA
page 87 of 106

SeringCARD CCID over SeriaL - Developer's Guide

7.2.3. Obtaining information on coupler and slots

The sequences below are useful to retrieve textual information such as product name, slot name,
etc. The numerical information (such as version, serial number) are returned as hexadecimal
strings.

Remember that the returned value (if some) is prefixed by the status code (1,00 on success).

a. Coupler “product-wide” information

Sequence Will return...

582001 Vendor name (“SpringCard”)

58 2002 Product name

58 2003 Product serial number (in ASCII)

58 20 04 USB vendor ID and product ID (in ASCII)

58 2005 Product version (in ASCII)

58 20 80 Number of slots (raw value on 1 byte)

58 20 83 Product serial number (raw value on 4 bytes)

5820 84 USB vendor ID and product ID (raw value on 4 bytes)

58 20 85 Product version (raw value on 3 bytes: major/minor/build)

b. Slot related information

Sequence Will return...

582100 Name of slot O

springcard —

page 88 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

7.2.4. Reading/writing K663's configuration registers

The K663 features a non-volatile memory to store configuration registers.

See chapter 8 for the list of these registers, and their allowed values.
a. Reading coupler’s registers

To read the value of the configuration register at <index>, send the sequence:

58 OE <index>
Remember that the returned value (if some) is prefixed by the status code (,00 on success, ,16 if

the value is not defined in the non-volatile memory).
b. Writing coupler’s registers

To define the value of the configuration register at <index>, send the sequence:

58 OD <index> <..data..>
Send an empty <data> (zero-length) to erase the current value. In this case, default value will be

used.

The non-volatile memory has a limited write/erase endurance.
Writing a different value in a configuration register more than 100 times may permanently
damage your product.

The configuration is loaded upon reset. To apply a new configuration, you must reset the K663
(or cycle power).

Alternatively, you may load temporary configuration settings as explained in the next paragraph.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard it

SeringCarD CCID over SeriaL - Developer's Guide

7.2.5. Pushing a new temporary configuration

To overrule temporarily the value of the configuration register at <index>, send the sequence:

58 8D <index> <..data.>
Send an empty <data> (zero-length) to reload the default value.

This value will be applied immediately, but on next reset the K663 will reload its configuration
registers from the non-volatile memory.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard it

SeringCarD CCID over SeriaL - Developer's Guide

8. CONFIGURATION REGISTERS

The K663 features a non-volatile memory to store its configuration.

The memory is divided into “registers”. Every register is identified by its address (a 1-B value) and
is documented in this chapter.

Warning 1
Some registers are not listed in this chapter, yet they may have been defined in factory, or should
use the default value for correct operation. Do not write or erase any register that is not listed in

this chapter.

Warning 2

The non-volatile memory has a limited write/erase endurance.

Writing a different value in a configuration register more than 100 times may permanently
damage your product.

8.1. EDITING COUPLER'S CONFIGURATION

The coupler's configuration registers are made available through a SCardControl function call.
Refer to § 7.2.4 for details.

The configuration is loaded upon reset. To apply the new configuration, the software shall
prompt the user to reset or unplug/plug the K663.

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

Springcc

PMD15305-AA
page 91 of 106

SeringCARD CCID over SeriaL - Developer's Guide

8.2. LiST OF THE CONFIGURATION REGISTERS AVAILABLE TO THE END-USER OR INTEGRATOR

Address | Section Name See §
nBO Contactless Enabled protocols 8.5.1
nB2 PC/SC CLA of the APDU interpreter 8.4.2
»B3 PC/SC RF behaviour in PC/SC mode 8.4.3
nB4 Contactless Parameters for polling 8.5.2
nC4 Contactless Allowed baudrates in T=CL 8.5.4
nC5 Contactless Options for T=CL 8.5.5
nC9 Contactless Options for polling 8.5.3
hCA Core Configuration of the LEDs 8.3.1
nCB Core Options for the LEDs and GPIOs 8.3.2
nCC Core Behaviour of the LEDs and buzzer 8.3.3
nCF Felica Service Codes for Felica read/write 8.6.1
hEl NFC P2P Global Bytes bytes in ATR_REQ 8.7.1

Do not write or erase any register that is not listed in this chapter.

springcard

PMD15305-AA
page 92 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

8.3. CORE CONFIGURATION

8.3.1. Configuration of the LEDs

Address: ,CA — Size: 2 bytes

Bit Action if set

Note

msb 15-12 |[LED 1
hO:
hl:
h2:
h3:
h4:

colour is undefined
colour is red
colour is green
colour is yellow
colour is blue

11-8 |LED2
hO:
h]-:
W2
h3:
nd:

colour is undefined
colour is red
colour is green
colour is yellow
colour is blue

7-4 LED 3
hO:
nl:
h2:
h3:
h4:

colour is undefined
colour is red
colour is green
colour is yellow
colour is blue

Isb 3-0 LED 4
hO:
hl:
h2:
h3:
h4:

colour is undefined
colour is red
colour is green
colour is yellow
colour is blue

Default value: ;0000

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

sprinQcarc —

page 93 of 106

SeringCARD CCID over SeriaL - Developer's Guide

8.3.2. Options for the LEDs and GPIOs

Address: ,C9 - Size: 1 bytel

Bit Action if set Note

Use PWM for buzzer

RFU

RFU

RFU

Invert logic for LED 4

Invert logic for LED 3

Invert logic for LED 2
Isb 0 Invert logic for LED 1

Default value: ,00

msb

RIN(W|R OO (N

8.3.3. Behaviour of the LEDs and buzzer

If the coupler has some LEDs, the coupler shows its state (card present, card absent, error) by its
LEDs. You may disable this feature by setting bit 7 of this register to 1 (the application is still able
to control the LEDs as documented in § 7.2.1.a and 4.4.1.a).

If the coupler has a buzzer, the buzzer sounds every time a PICC is activated. The 6 low-order bytes
of this register define the duration or this beep, in 10ms interval. To disable the automatic beep
on card arrival, set this value to 0 (the application is still able to control the buzzer as documented
in§7.2.2 and 4.4.1.b).

Address: ,CC — Size: 1 byte

Bit Values / Meaning
msb 7 1 : the K663 does signal its state on the LEDs
0 : the K663 doesn't signal its state on the LEDs
6 RFU, must be 0
Isb 5 Duration of the automatic beep on card arrival, x 10ms (0 to 630ms)
Set to 1,00 to disable the automatic beep

Default value: ,88 (80ms beep on PICC arrival + state on LEDs)

springcard —

page 94 of 106

SeriNngCARD CCID over SeriaL - Developer's Guide

8.4. PC/SC CONFIGURATION

8.4.1. Slot naming and startup mode

Address: ,B1 - Size: 1 byte

Bit Action if set Note

msb RFU

RFU

RFU

RFU

RFU

RFU

RIN[W|IAUWO (N

Start with Contactless slot OFF The Contactless slot will not run until
resumed by a Control command

msb 0 RFU

Default value: ,00

8.4.2. CLA byte of APDU interpreter

This register defines the CLA (class) byte affected to the APDU interpreter (see § 4.1.1).
To disable the APDU interpreter, define this register to ,00.

Address: ,B2 — Size: 1 byte

Default value: ,FF

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

sprinQcard

®
®

PMD15305-AA
page 95 of 106

SeringCARD CCID over SeriaL - Developer's Guide

8.4.3.

Behaviour of the contactless slot in PC/SC mode

This register defines the behaviour of the K663's contactless slot in PC/SC mode.

Address: ,B3 — Size: 1 byte

Bit Action if set Note
msb 7 Innovatron: return the “real” T=0 ATR | Setting this bit breaks the compatibility
(as supplied in REPGEN) instead of |with MS CCID driver, because the card
building a pseudo ATR is connected in T=1 where its ATR
claims it is T=0 only
6 Use only standard values for PIX.NN in | Numerous contactless PICCs/VICCs
the ATR have not been registered by their
vendor in the PC/SC specification to
get a standard PIX.NN.
SpringCard has defined vendor-specific
values for those cards (see 5.1.5).
If this bit is set, these non-standard
values will not be used, and PIX.NN will
be fixed to ,0000 for all PICCs/VICCs
that are not in the standard.
5 Disable the pause in RF field after the | When the PICC/VICC stops responding,
PICC/VICC has been removed the K663 pauses its RF field for 10 to
20ms. Setting this bit disable this
behaviour.
4 Disable the pause in RF field after the | During the polling sequence, the K663
PICC/VICC during the polling pauses its RF field for 10 to 20ms
between the polling loops. Setting this
bit disable this behaviour.
3 No NFC-DEP activation over Felica
(1ISO 18092 @ 212 or 424 kbit/s)
2 No NFC-DEP activation over ISO
14443-A (1SO 18092 @ 106 kbit/s)
1 No T=CL (ISO-DEP) activation over ISO |Send SLOT CONTROL P1,P2=,20,01 to
14443-B activate the PICC manually
Isb 0 No T=CL (ISO-DEP) activation over ISO |Send SLOT CONTROL P1,P2=,20,02 to
14443-A activate the PICC manually

Default value: ,00 (T=CL active over 14443 A and B, NFC-DEP active over 14443 A and Felica)

PMD15305-AA
page 96 of 106

springcar

SeringCARD CCID over SeriaL - Developer's Guide

8.5. CONTACTLESS CONFIGURATION

8.5.1. Enabled protocols

This register defines the list of protocols the K663 will look for during its polling loop. Any
PICC/VICC compliant with one of the active protocols will be “seen”, and the others ignored.

Address: ,BO — Size: 2 bytes (MSB first)

Bit Active. protocol (if set) Version
msb 15 RFU

14 RFU

13 RFU

12 JIS:X6319-4 (Felica)
ISO 18092 @ 212 kbit/s and 424 kbit/s
NFC Forum Type 3 Tags

11 Kovio RF barcode
10 NFC Forum Type 1 Tags (Innovision/Broadcom chips)
9 RFU
8 EM 4134 21.81
7 Innovatron
(legacy Calypso cards — sometimes called 14443-B’)
6 RFU
5 ST Micro Electronics SRxxx
4 Inside Contactless PicoPass (also HID iClass)
3 RFU
2 ISO 15693
1 ISO 14443-B
NFC Forum Type 4-B Tags
Isb 0 ISO 14443-A

ISO 18092 @ 106kbit/s
NFC Forum Type 2 and Type 4-A Tags
Default value: ,F7FF (all supported protocols but Kovio RF barcode are activated)

springcard

PMD15305-AA
page 97 of 106

SeringCARD CCID over SeriaL - Developer's Guide

8.5.2.

Parameters for polling

This register defines the parameters used by the K663 for the PICC/VICC polling.

Address: ,B4 — Size: 5 bytes

and ISO 18092 @ 212
and 424 kbit/s

Byte Data Default Remark
value
0 |AFlforISO 14443-B |,00 Specify the Application Family Identifier to be used
during ISO 14443-B polling.
»00 means that all PICCs shall answer.
1 | AFlfor ISO 15693 n00 Specify the Application Family Identifier to be used
during ISO 15693 polling.
»00 means that all VICCs shall answer.
2-3 |SCforJIS:X6319-4 WFFFF Specify the System Code to used during Felica polling
and ISO 18092 @ 212 (SENSF_REQ). The value is stored MSB first.
and 424 kbit/s nFFFF means that all targets shall answer.
4 |RCforJIS:X6319-4 n00 Specify the Request Code to used during Felica polling

(SENSF_REQ).

This value shall be ,00 to accept both NFC Type 3 Tags and NFC
devices running in P2P mode (NFC-DEP), or ;01 to accept only NFC
Type 3 Tags

PMD15305-AA
page 98 of 106

springcard

SeringCARD CCID over SeriaL - Developer's Guide

8.5.3. Options for polling

Use this register to configure the extended ATQB support for ISO 14443-B cards, and to disable
JIS:X6319-4 / 1SO 18092 @ 424 kbit/s.

Address: ,C9 — Size: 1 byte

Bit Action if set Note
msb 7 RFU
6 RFU
5 RFU
4 Activate extended ATQB If this bit is set, the K663 will ask for an
extended ATQB from ISO 14443-B.
Not all cards do support this feature.
3 Disable JIS:X6319-4 / ISO 18092 @ If this bit is set, the K663 will
424 kbit/s communicate with Felica cards and
NFC P2P targets up to 212 kbit/s only
2 RFU
1 RFU
Isb 0 RFU

Default value: ,00 (normal ATQB, allow 424kbit/s for JIS:X6319-4)

sprinQcarc —

page 99 of 106

SeringCARD CCID over SeriaL - Developer's Guide

8.5.4. Allowed baudrates in T=CL (ISO 14443-4)

Use this register to let the K663 negotiate a baudrate greater than 106 kbit/s with 1ISO 14443-4
PICCs (DSI, DRI defined in PPS for ISO 14443 A, in ATTRIB for ISO 14443 B).

The H663 is theoretically able to communicate with PICCs at 848 kbit/s in both directions, but the
actual maximum speed depends heavily on the characteristics of the PICC, and on the coupler’s
actual antenna and environment.

Address: ,C4 - Size: 2 bytes (MSB first)

Bit | Meaning (if set)

1SO 14443-A DS
msb 15 RFU, must be O

14 Allow ISO 14443 A PICC - K663 @ 848 kbit/s (DSI = 3 in PPS)

13 Allow ISO 14443 A PICC = K663 @ 424 kbit/s (DSI = 2 in PPS)

12 Allow ISO 14443 A PICC = K663 @ 212 kbit/s (DSI =1 in PPS)
1SO 14443-A DR

11 RFU, must be O

10 Allow ISO 14443 A K663 - PICC @ 848 kbit/s (DRI = 3 in PPS)

9 Allow 1SO 14443 A K663 = PICC @ 424 kbit/s (DRI = 2 in PPS)

8 Allow ISO 14443 A K663 = PICC @ 212 kbit/s (DRI =1 in PPS)
1SO 14443-B DS

7 RFU, must be O

6 Allow ISO 14443 B PICC = K663 @ 848 kbit/s (DSI = 3 in ATTRIB)

5 Allow 1SO 14443 B PICC - K663 @ 424 kbit/s (DSI =2 in ATTRIB)

4 Allow 1SO 14443 B PICC - K663 @ 212 kbit/s (DSI =1 in ATTRIB)
ISO 14443-B DR

3 RFU, must be O

2 Allow I1SO 14443 B K663 = PICC @ 848 kbit/s (DRI = 3 in ATTRIB)

1 Allow I1SO 14443 B K663 = PICC @ 424 kbit/s (DRI = 2 in ATTRIB)

Isb 0 Allow I1SO 14443 B K663 = PICC @ 212 kbit/s (DRI =1 in ATTRIB)

Default value: 13333 (up to 424 kbit/s).

You must lower-down the allowed baudrates to 106kbps (,0000) if your antenna is not capable to
handle the higher baudrates without communication errors.

®
®

springcarc —

page 100 of 106

SeringCARD CCID over SeriaL - Developer's Guide

8.5.5. Options for T=CL (1SO 14443-4)

This register defines the behaviour of the ISO 14443-4 subsystem.

Address: ,C5 — Size: 4 bytes

Byte Data Default Remark
value
0 | Extra guard time n00 Guard time (specified in ms) to add before sending a

frame to the PICC.

1 Retries on card mute |,03 Number of retries before giving up when the PICC does
not answer (communication timeout, and no other
error detected)

2 |Retries on comm. n03 Number of retries before giving up when the PCC does
error not understand the PICC's response (CRC, parity,
framing errors...)
3 |RFU »00 This byte must be ,00

8.6. FELICA CONFIGURATION

8.6.1. Service Codes for Felica read/write

Use this register to define how the K663 processes Felica cards and NFC Type 3 Tags.

Address: ,CF — Size: 4 bytes

Byte Data Default value Remark
0-1 |Read »000B Service Code used when the READ BINARY instruction is
Service invoked (MSB first)
Code The value ,000B is mandated by the specification of the
NFC Forum Type 3 Tag
2-3 |Update »0009 Service Code used when the UPDATE BINARY instruction is
Service invoked (MSB first)
Code The value ;0009 is mandated by the specification of the
NFC Forum Type 3 Tag

Those values may be temporarily overwritten right into the SCardTransmit stream using the SET
FELICA RUNTIME PARAMETERS instruction (§ 4.3.6).

springcard Jr—

SeringCarD CCID over SeriaL - Developer's Guide

8.7. 1SO 18092 / NFC-DEP conFIGURATION

8.7.1. Global Bytes in ATR_REQ

Address: ,E1 — Size: 0 to 15 bytes
This register defines the G, bytes sent in ATR_REQ.

If this register remains empty, the default value is:

46 66 6D LLCP magic number

01 01 11 LLCP version 1.1

03 02 00 13 |Services = LLC Link Management + SNEP (NDEF exchange protocol)
04 01 96 Link timeout = 1.5 seconds

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard

PMD15305-AA
page 102 of 106

SeringCARD CCID over SeriaL - Developer's Guide

9. ANNEex A — SPECIFIC ERROR CODES

When the APDU interpreter returns SW1 = ,6F, the value of SW2 maps to one of the K663 specific

error codes listed below.

SW2 |Symbolic name®

Meaning

n01 MI_NOTAGERR

No answer received (no card in the field, or
card is mute)

402 MI_CRCERR

CRC error in card's answer

h03 MI_EMPTY

No data available

n04 MI_AUTHERR

Card authentication failed

n05 MI_PARITYERR

Parity error in card's answer

h06 MI_CODEERR

Invalid card response opcode

n07 MI_CASCLEVEX

Bad anti-collision sequence

n08 MI_SERNRERR

Card's serial number is invalid

409 MI_LOCKED

Card or block locked

hOA MI_NOTAUTHERR

Card operation denied, must be authenticated
first

n0B MI_BITCOUNTERR

Wrong number of bits in card's answer

h0C MI_BYTECOUNTERR

Wrong number of bytes in card's answer

n0D MI_VALUEERR

Card counter error

hOE MI_TRANSERR

Card transaction error

hOF MI_WRITEERR

Card write error

n10 MI_INCRERR

Card counter increment error

h11 MI_DECRERR

Card counter decrement error

h12 MI_READERR

Card read error

nl3 MI_OVFLERR

RC: FIFO overflow

n15 MI_FRAMINGERR

Framing error in card's answer

h16 MI_ACCESSERR

Card access error

nl7 MI_UNKNOWN_COMMAND

RC: unknown opcode

418 MI_COLLERR

A collision has occurred

h19 MI_COMMAND_FAILED

RC: command execution failed

hlA MI_INTERFACEERR

RC: hardware failure

n1B MI_ACCESSTIMEOUT

RC: timeout

n1C MI_NOBITWISEANTICOLL

Anti-collision not supported by the card(s)

n1D MI_EXTERNAL_FIELD

An external RF field is already present, unable
to activate the coupler's RF field

% As used in SpringProx API (defines in springprox.h)

PMD15305-AA
page 103 of 106

SeringCARD CCID over SeriaL - Developer's Guide

n1F MI_CODINGERR Bad card status

n20 MI_CUSTERR Card: vendor specific error

n21 MI_CMDSUPERR Card: command not supported
h22 MI_CMDFMTERR Card: format of command invalid
n23 MI_CMDOPTERR Card: option of command invalid
n24 MI_OTHERERR Card: other error

n3C MI_WRONG_PARAMETER Coupler: invalid parameter

n64 MI_UNKNOWN_FUNCTION Coupler: invalid opcode

h/0 MI_BUFFER_OVERFLOW Coupler: internal buffer overflow
n7D MI_WRONG_LENGTH Coupler: invalid length

page 104 of 106

springcard i

SeringCarD CCID over SeriaL - Developer's Guide

10. 3RD-PARTY LICENSES

SpringCard K663 uses one 3-rd party open-source software component.

10.1. FreeRTOS

FreeRTOS is a market leading real time operating system (or RTOS) from Real Time Engineers Ltd.
Starting from firmware version 2.00, SpringCard K663 runs on FreeRTOS v8.2.0.

FreeRTOS is distributed under a modified GNU General Public License (GPL) that allows to use it in
commercial, closed-source products.

For more information, or to download the source code of FreeRTOS, please visit

www.freertos.org

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS
All other brand names, product names, or trademarks belong to their respective holders
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

http://www.freertos.org/

springcard —

page 105 of 106

SeringCarD CCID over SeriaL - Developer's Guide

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

springcard I

page 106 of 106

SeringCarD CCID over SeriaL - Developer's Guide

DiscLaiver

This document is provided for informational purposes only and shall not be construed as a commercial offer, a license,
an advisory, fiduciary or professional relationship between SPRINGCARD and you. No information provided in this
document shall be considered a substitute for your independent investigation.

The information provided in document may be related to products or services that are not available in your country.

This document is provided "as is" and without warranty of any kind to the extent allowed by the applicable law. While
SPRINGCARD will use reasonable efforts to provide reliable information, we don't warrant that this document is free
of inaccuracies, errors and/or omissions, or that its content is appropriate for your particular use or up to date.
SPRINGCARD reserves the right to change the information at any time without notice.

SPRINGCARD doesn't warrant any results derived from the use of the products described in this document.
SPRINGCARD will not be liable for any indirect, consequential or incidental damages, including but not limited to lost
profits or revenues, business interruption, loss of data arising out of or in connection with the use, inability to use or
reliance on any product (either hardware or software) described in this document.

These products are not designed for use in life support appliances, devices, or systems where malfunction of these
product may result in personal injury. SPRINGCARD customers using or selling these products for use in such
applications do so on their own risk and agree to fully indemnify SPRINGCARD for any damages resulting from such
improper use or sale.

COPYRIGHT NOTICE

All information in this document is either public information or is the intellectual property of SPRINGCARD and/or its
suppliers or partners.

You are free to view and print this document for your own use only. Those rights granted to you constitute a license
and not a transfer of title: you may not remove this copyright notice nor the proprietary notices contained in this
documents, and you are not allowed to publish or reproduce this document, either on the web or by any mean,
without written permission of SPRINGCARD.

Copyright © SPRINGCARD SAS 2015, all rights reserved.
EDITOR,S INFORMATION
SPRINGCARD SAS company with a capital of 227 000 €
RCS EVRY B 429 665 482
Parc Gutenberg, 2 voie La Cardon

91120 Palaiseau — FRANCE

CONTACT INFORMATION
For more information and to locate our sales office or distributor in your country or area, please visit

wWww.springcard.com

SPRINGCARD, the SPRINGCARD logo, PRO ACTIVE and the PRO ACTIVESPRINGCARD logo are registered trademarks of SPRINGCARDSPRINGCARD SAS.
All other brand names, product names, or trademarks belong to their respective holders.
Information in this document is subject to change without notice. Reproduction without written permission of SPRINGCARD is forbidden.

http://www.springcard.com/

	1. Introduction
	1.1. Abstract
	1.2. Supported products
	1.3. Audience
	1.4. Support and updates
	1.5. Useful links

	2. PC/SC, smartcards and NFC: quick introduction and glossary
	2.1. Smartcards and contactless smartcards standards
	2.1.1. Smartcards
	a. ATR (SC to PC, upon reset)
	b. C-APDUs (PC to SC)
	c. R-APDUs (SC to PC)

	2.1.2. Contactless smartcards

	2.2. Non-7816-4 contactless cards – introducing the embedded APDU interpreter
	2.3. PC/SC
	a. PC/SC and a contactless smartcard
	b. PC/SC and the embedded APDU interpreter

	2.4. NFC ?
	2.5. Vendor-specific features – direct control of the coupler
	2.6. Glossary – useful terms

	3. The SCARD_On_MCU library
	3.1. Getting started
	3.1.1. Download the library
	3.1.2. Tailor the library to your target
	a. The project.h file
	b. The HAL
	c. Testing the library

	3.2. Reference documentation of the communication between the MCU and the K663
	3.3. Reference documentation of the library

	4. The embedded APDU interpreter
	4.1. Basis
	4.1.1. CLA byte of the embedded APDU interpreter
	a. Changing the CLA byte of the embedded APDU interpreter
	b. Disabling the embedded APDU interpreter

	4.1.2. Status words returned by the embedded APDU interpreter
	4.1.3. Embedded APDU interpreter instruction list

	4.2. Instructions defined by the PC/SC standard (v2 part 3)
	4.2.1. GET DATA instruction
	4.2.2. LOAD KEY instruction
	4.2.3. GENERAL AUTHENTICATE instruction
	4.2.4. READ BINARY instruction
	4.2.5. UPDATE BINARY instruction

	4.3. SpringCard-specific instructions for the contactless slot
	4.3.1. MIFARE CLASSIC READ instruction
	a. MIFARE CLASSIC READ using coupler’s keys
	b. MIFARE CLASSIC READ selecting a key in the coupler
	c. MIFARE CLASSIC READ with specified key

	4.3.2. MIFARE CLASSIC WRITE instruction
	a. MIFARE CLASSIC WRITE using coupler’s keys
	b. MIFARE CLASSIC WRITE selecting a key in the coupler
	c. MIFARE CLASSIC WRITE with specified key

	4.3.3. MIFARE CLASSIC VALUE instruction
	a. MIFARE CLASSIC VALUE using coupler’s keys
	b. MIFARE CLASSIC VALUE selecting a key in the coupler
	c. MIFARE CLASSIC VALUE with specified key

	4.3.4. RFID MEMORY CONTROL instruction
	a. Read Single Block
	b. Write Single Block
	c. Lock Block
	d. Read Multiple Blocks
	e. Write Multiple Blocks
	f. Write AFI
	g. Lock AFI
	h. Write DSFID
	i. Lock DSFID
	j. Get System Information
	k. Get Multiple Block Security

	4.3.5. CONTACTLESS SLOT CONTROL instruction
	4.3.6. SET FELICA RUNTIME PARAMETERS instruction
	a. SERVICE CODE for the READ BINARY instruction
	b. SERVICE CODE for the UPDATE BINARY instruction
	c. SERVICE CODE for both READ BINARY and UPDATE BINARY instructions
	d. SYSTEM CODE and REQUEST code for Felica polling

	4.3.7. ENCAPSULATE instruction for the Contactless slot

	4.4. Other SpringCard-specific instructions
	4.4.1. READER CONTROL instruction
	a. Driving coupler’s LEDs
	b. Driving coupler’s buzzer
	c. Others

	4.4.2. TEST instruction

	5. Working with contactless cards – useful hints
	5.1. Recognizing and identifying PICC/VICC in PC/SC environment
	5.1.1. ATR of an ISO 14443-4 compliant smartcard
	a. For ISO 14443-A:
	b. For ISO 14443-B:
	c. For Innovatron (legacy Calypso cards):

	5.1.2. ATR of a wired-logic PICC/VICC
	5.1.3. Using the GET DATA instruction
	5.1.4. Contactless protocol
	5.1.5. Contactless card name bytes

	5.2. ISO 14443-4 PICCs
	5.2.1. Desfire first version (0.4)
	5.2.2. Desfire EV0 (0.6) and EV1
	5.2.3. Calypso cards

	5.3. Wired-logic PICCs based on ISO 14443-A
	5.3.1. Mifare Classic
	a. READ BINARY instruction
	b. UPDATE BINARY instruction
	c. Specific instructions for Mifare Classic

	5.3.2. Mifare Plus X and Mifare Plus S
	a. Level 0
	b. Level 1
	c. Level 2
	d. Level 3

	5.3.3. NFC Forum Type 2 Tags – Mifare UltraLight and UltraLight C, NTAG203...
	a. READ BINARY instruction
	b. UPDATE BINARY instruction
	c. Mifare UltraLight C 3-DES authentication

	5.3.4. NFC Forum Type 1 Tags – Innovision/Broadcom chips
	a. Memory Structures
	b. READ BINARY instruction
	Using the RALL or RSEG functions is a lot faster than using READ/READ8 in a loop.
	c. UPDATE BINARY instruction

	5.4. Wired-logic PICCs based on ISO 14443-B
	5.4.1. ST Micro Electronics SR176
	a. READ BINARY instruction
	b. UPDATE BINARY instruction

	5.4.2. ST Micro Electronics SRI4K, SRIX4K, SRI512, SRX512, SRT512
	a. READ BINARY instruction
	b. UPDATE BINARY instruction

	5.4.3. Inside Contactless PicoPass, ISO 14443-2 mode
	a. READ BINARY instruction
	b. UPDATE BINARY instruction
	c. Page select

	5.4.4. Inside Contactless PicoPass, ISO 14443-3 mode
	a. READ BINARY instruction
	b. UPDATE BINARY instruction

	5.4.5. Atmel CryptoRF
	a. READ BINARY instruction
	b. UPDATE BINARY instruction

	5.5. ISO 15693 VICCs
	5.5.1. ISO 15693-3 read/write commands
	a. READ BINARY instruction
	b. UPDATE BINARY instruction

	5.5.2. Read/write commands for ST Micro Electronics chips with a 2-B block address
	5.5.3. Complete ISO 15693 command set
	5.5.4. Implementation of basic ISO 15693 commands
	a. Read single block
	b. Write single block
	c. Lock block
	d. Write AFI
	e. Lock AFI
	f. Write DSFID
	g. Lock DSFID
	h. Get system information

	5.6. Other non-ISO PICCs
	5.6.1. NFC Forum Type 3 Tags / Felica
	a. READ BINARY instruction
	b. UPDATE BINARY instruction (single byte)

	5.7. Other non-ISO VICCs
	5.7.1. EM4134
	a. READ BINARY instruction
	b. UPDATE BINARY instruction
	c. Lock

	6. Using the H663 with a NFCIP-1 target
	7. Direct control of the K663
	7.1. Basis
	7.1.1. Link to SpringProx legacy protocol
	7.1.2. Format of response, return codes
	7.1.3. Redirection to the Embedded APDU Interpreter

	7.2. List of available control sequences
	7.2.1. Action on the LEDs
	a. Setting the coupler's LEDs manually
	b. Going back to default (LEDs managed by the coupler's firmware)

	7.2.2. Action on the buzzer
	a. Starting/stopping the buzzer
	b. Going back to default (buzzer managed by the coupler's firmware)

	7.2.3. Obtaining information on coupler and slots
	a. Coupler “product-wide” information
	b. Slot related information

	7.2.4. Reading/writing K663's configuration registers
	a. Reading coupler’s registers
	b. Writing coupler’s registers

	7.2.5. Pushing a new temporary configuration

	8. Configuration registers
	8.1. Editing coupler's configuration
	8.2. List of the configuration registers available to the end-user or integrator
	8.3. Core configuration
	8.3.1. Configuration of the LEDs
	8.3.2. Options for the LEDs and GPIOs
	8.3.3. Behaviour of the LEDs and buzzer

	8.4. PC/SC configuration
	8.4.1. Slot naming and startup mode
	8.4.2. CLA byte of APDU interpreter
	8.4.3. Behaviour of the contactless slot in PC/SC mode

	8.5. Contactless configuration
	8.5.1. Enabled protocols
	8.5.2. Parameters for polling
	8.5.3. Options for polling
	8.5.4. Allowed baudrates in T=CL (ISO 14443-4)
	8.5.5. Options for T=CL (ISO 14443-4)

	8.6. Felica configuration
	8.6.1. Service Codes for Felica read/write

	8.7. ISO 18092 / NFC-DEP configuration
	8.7.1. Global Bytes in ATR_REQ

	9. Annex A – Specific error codes
	10. 3rd-party licenses
	10.1. FreeRTOS

